Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

18.2: Voting Theory

  • Page ID
    34290
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    1.

    \(\begin{array}{|l|l|l|l|l|l|}
    \hline \text { Number of voters } & 3 & 3 & 1 & 3 & 2 \\
    \hline 1^{\text {st }} \text { choice } & \mathrm{A} & \mathrm{A} & \mathrm{B} & \mathrm{B} & \mathrm{C} \\
    \hline 2^{\text {nd }} \text { choice } & \mathrm{B} & \mathrm{C} & \mathrm{A} & \mathrm{C} & \mathrm{A} \\
    \hline 3^{\text {rd }} \text { choice } & \mathrm{C} & \mathrm{B} & \mathrm{C} & \mathrm{A} & \mathrm{B} \\
    \hline
    \end{array}\)

    3.

    1. \(9+19+11+8 = 47\)
    2. 24 for majority; 16 for plurality (though a choice would need a minimum of 17 votes to actually win under the Plurality method)
    3. Atlanta, with 19 first-choice votes
    4. Atlanta 94, Buffalo 111, Chicago 77. Winner: Buffalo
    5. Chicago eliminated, 11 votes go to Buffalo. Winner: Buffalo
    6. A vs B: B. A vs C: A. B vs C: B. B gets 2 pts, A 1 pt. Buffalo wins.

    5.

    1. \(120+50+40+90+60+100 = 460\)
    2. 231 for majority; 116 for plurality
    3. A with 150 first choice votes
    4. A 1140, B 1060, C 1160, D 1240. Winner: D
    5. B eliminated, votes to C. D eliminated, votes to A. Winner: A
    6. A vs B: B. A vs C: A. A vs D: D. B vs C: C. B vs D: D. C vs D: C. A 1pt, B 1pt, C 2pt, D 2pt. Tie between C and D.

    Winner would probably be C since C was preferred over D

    7.

    1. 33
    2. 17

    9. Yes, B

    11. B, with 17 approvals

    13. Independence of Irrelevant Alternatives Criterion

    15. Condorcet Criterion


    18.2: Voting Theory is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by David Lippman via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?