5.5: Daunting Trigonometric Integral
- Page ID
- 59098
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The final example of taking out the big part is to estimate a daunting trigonometric integral that I learned as an undergraduate. My classmates and I spent many late nights in the physics library solving homework problems; the graduate students, doing the same for their courses, would regale us with their favorite mathematics and physics problems.
The integral appeared on the mathematical-preliminaries exam to enter the Landau Institute for Theoretical Physics in the former USSR. The problem is to evaluate
\[\int_{-\pi/2}^{\pi/2} (\cos t)^{100}dt \label{5.42} \]
to within 5% in less than 5 min without using a calculator or computer!
That \((\cos t)^{100}\) looks frightening. Most trigonometric identities do not help. The usually helpful identity \((\cos t)^{2} = (\cos 2t − 1)/2\) produces only
\[(\cos t)^{100} = (\frac{\cos 2t - 1}{2})^{50}, \label{5.43} \]
which becomes a trigonometric monster upon expanding the 50th power.
A clue pointing to a simpler method is that 5% accuracy is sufficient so, find the big part! The integrand is largest when \(t\) is near zero. There, \(\cos t ≈ 1 − t^{2}/2\) (Problem 5.20), so the integrand is roughly
\[(\cos t)^{100} ≈ (1 - \frac{t^{2}}{2})^{100}. \label{5.44} \]
It has the familiar form \((1 + z)^{n}\), with fractional change \(z = −t^{2}/2\) and exponent \(n = 100\). When \(t\) is small, \(z = −t^{2}/2\) is tiny, so \((1+z)^{n}\) may be approximated using the results of Section 5.3.4:
\[(1+z)^{n} \approx\left\{\begin{array}{ll}
1+n z & (z \ll 1 \text { and } n z \ll 1) \\
e^{n z} & (z \ll 1 \text { and } n z \text { unrestricted) }
\end{array}\right.\label{5.45} \]
Because the exponent \(n\) is large, \(nz\) can be large even when t and \(z\) are small. Therefore, the safest approximation is \((1 + z)^{n} ≈ e^{nz}\); then
\[(\cos t)^{100} ≈ (1 - \frac{t^{2}}{2})^{100} ≈ e^{-50t^{2}}. \label{5.46} \]
A cosine raised to a high power becomes a Gaussian! As a check on this surprising conclusion, computer- generated plots of \((cost)^{n}\) for \(n = 1...5\) show a Gaussian bell shape taking form as \(n\) increases.
Even with this graphical evidence, replacing \((cos t)^{100}\) by a Gaussian is a bit suspicious. In the original integral, t ranges from \(−\pi/2\) to \(\pi/2\), and these endpoints are far outside the region where \(\cos t ≈ 1 − t^{2}/2\) is an accurate approximation. Fortunately, this issue contributes only a tiny error (Problem 5.35). Ignoring this error turns the original integral into a Gaussian integral with finite limits:
\[\int_{-\pi/2}^{\pi/2} (cost)^{100}dt ≈ \int_{-\pi/2}^{\pi/2} e^{-50t^{2}}dt. \label{5.47} \]
Unfortunately, with finite limits the integral has no closed form. But extending the limits to infinity produces a closed form while contributing almost no error (Problem 5.36). The approximation chain is now
\[\int_{-\pi/2}^{\pi/2} (cos t)^{100}dt ≈ \int_{-\pi/2}^{\pi/2} e^{-50t^{2}}dt ≈ \int_{-\infty}^{\infty} e^{-50t^{2}}dt. \label{5.48} \]
Problem 5.35 Using the original limits
The approximation \(\cos t ≈ 1 − t^{2}/2\) requires that t be small. Why doesn’t using the approximation outside the small-t range contribute a significant error?
Problem 5.36 Extending the limits
Why doesn’t extending the integration limits from ±\(\pi/2\) to ±\(\infty\) contribute a significant error?
The last integral is an old friend (Section 2.1): \(\int_{-\infty}^{\infty} e^{-at^{2}}dt = \sqrt{\pi/a}\). With \(α = 50\), the integral becomes \(\sqrt{π/50}\). Conveniently, 50 is roughly \(16\pi\), so the square root and our 5% estimate is roughly 0.25.
For comparison, the exact integral is (Problem 5.41)
\[\int_{-\infty}^{\infty} (cos t)^{n} dt = 2^{-n}(\left(\begin{array}{l} n \\ n/2 \end{array}\right): \pi \label{5.49} \]
When \(n = 100\), the binomial coefficient and power of two produce
\[\frac{12611418068195524166851562157}{158456325028528675187087900672}\pi ≈ 0.25003696348037. \label{5.50} \]
Our 5-minute, within-5% estimate of 0.25 is accurate to almost 0.01%!
Problem 5.37 Sketching the approximations
Plot \((cos t)^{100}\) and its two approximations \(e^{-50t^{2}}\) and \(1 - 50t^{2}\).
Problem 5.38 Simplest approximation
Use the linear fractional-change approximation \((1 − t^{2}/2)^{100} ≈ 1 − 50t^{2}\) to approximate the integrand; then integrate it over the range where \(1 − 50t^{2}\) is positive. How close is the result of this 1-minute method to the exact value 0.2500 . . .?
Problem 5.39 Huge exponent
Estimate
\[\int_{-\pi/2}^{\pi/2} (cos t)^{100000}dt. \label{5.51} \]
Problem 5.40 How low can you go?
Investigate the accuracy of the approximation
\[\int_{-\pi/2}^{\pi/2} (cos t)^{n} dt ≈ \sqrt{\frac{\pi}{n}}, \label{5.52} \]
for small \(n\), including \(n = 1\).
Problem 5.41 Closed form
To evaluate the integral
\[\int_{-\pi/2}^{\pi/2} (\cos t)^{100} dt \label{5.53} \]
in closed form, use the following steps:
- Replace \(\cos t\) with (\(e^{it} + e^{−it})/2\).
- Use the binomial theorem to expand the 100th power.
- Pair each term like \(e^{ikt}\) with a counterpart \(e^{−ikt}\); then integrate their sum from \(−\pi/2\) to \(\pi/2\). What value or values of \(k\) produce a sum whose integral is nonzero?