Skip to main content
Mathematics LibreTexts

7.4: Distributive Property

  • Page ID
    5035
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives
    • Simplify expressions using the distributive property
    • Evaluate expressions using the distributive property
    be prepared!

    Before you get started, take this readiness quiz.

    1. Multiply: 3(0.25). If you missed this problem, review Example 5.3.5
    2. Simplify: 10 − (−2)(3). If you missed this problem, review Example 3.7.5.
    3. Combine like terms: 9y + 17 + 3y − 2. If you missed this problem, review Example 2.3.10.

    Simplify Expressions Using the Distributive Property

    Suppose three friends are going to the movies. They each need $9.25; that is, 9 dollars and 1 quarter. How much money do they need all together? You can think about the dollars separately from the quarters.

    The image shows the equation 3 times 9 equal to 27. Below the 3 is an image of three people. Below the 9 is an image of 9 one dollar bills. Below the 27 is an image of three groups of 9 one dollar bills for a total of 27 one dollar bills.

    The image shows the equation 3 times 25 cents equal to 75 cents. Below the 3 is an image of three people. Below the 25 cents is an image of a quarter. Below the 75 cents is an image of three quarters.

    They need 3 times $9, so $27, and 3 times 1 quarter, so 75 cents. In total, they need $27.75. If you think about doing the math in this way, you are using the Distributive Property.

    Definition: Distributive Property

    If a, b, c are real numbers, then a(b + c) = ab + ac.

    Back to our friends at the movies, we could show the math steps we take to find the total amount of money they need like this:

    \[\begin{split} 3(9&.25) \\ 3(9 &+ 0.25) \\ 3(9) &+ 3(0.25) \\ 27 &+ 0.75 \\ 27&.75 \end{split}\]

    In algebra, we use the Distributive Property to remove parentheses as we simplify expressions. For example, if we are asked to simplify the expression 3(x + 4), the order of operations says to work in the parentheses first. But we cannot add x and 4, since they are not like terms. So we use the Distributive Property, as shown in Example \(\PageIndex{1}\).

    Example \(\PageIndex{1}\):

    Simplify: 3(x + 4).

    Solution

    Distribute. 3 • x + 3 • 4
    Multiply. 3x + 12
    Exercise \(\PageIndex{1}\):

    Simplify: 4(x + 2).

    Answer

    \(4x+8\)

    Exercise \(\PageIndex{2}\):

    Simplify: 6(x + 7).

    Answer

    6x + 42

    Some students find it helpful to draw in arrows to remind them how to use the Distributive Property. Then the first step in Example 7.17 would look like this:

    The image shows the expression x plus 4 in parentheses with the number 3 outside the parentheses on the left. There are two arrows pointing from the top of the three. One arrow points to the top of the x. The other arrow points to the top of the 4.

    \[3 \cdot x + 3 \cdot 4\]

    Example \(\PageIndex{2}\):

    Simplify: 6(5y + 1).

    Solution

    CNX_BMath_Figure_07_03_025_img-01.png

    Distribute. $$6 \cdot 5y + 6 \cdot 1$$
    Multiply. $$30y + 6$$
    Exercise \(\PageIndex{3}\):

    Simplify: 9(3y + 8).

    Answer

    27y + 72

    Exercise \(\PageIndex{4}\):

    Simplify: 5(5w + 9).

    Answer

    25w + 45

    The distributive property can be used to simplify expressions that look slightly different from a(b + c). Here are two other forms.

    Definition: Distributive Property

    If a, b, c are real numbers, then\[a(b + c) = ab + ac$$Other forms$$a(b − c) = ab − ac$$$$(b + c)a = ba + ca\]

    Example \(\PageIndex{3}\):

    Simplify: 2(x − 3).

    Solution

    CNX_BMath_Figure_07_03_026_img-01.png

    Distribute. $$2 \cdot x + 2 \cdot 3$$
    Multiply. $$2x - 6$$
    Exercise \(\PageIndex{5}\):

    Simplify: 7(x − 6).

    Answer

    7x - 42

    Exercise \(\PageIndex{6}\):

    Simplify: 8(x − 5).

    Answer

    8x - 40

    Do you remember how to multiply a fraction by a whole number? We’ll need to do that in the next two examples.

    Example \(\PageIndex{4}\):

    Simplify: \(\dfrac{3}{4}\)(n + 12).

    Solution

    CNX_BMath_Figure_07_03_027_img-01.png

    Distribute. $$\dfrac{3}{4} \cdot n + \dfrac{3}{4} \cdot 12$$
    Multiply. $$\dfrac{3}{4}n + 9$$
    Exercise \(\PageIndex{7}\):

    Simplify: \(\dfrac{2}{5}\)(p + 10).

    Answer

    \(\frac{2}{5}p + 4 \)

    Exercise \(\PageIndex{8}\):

    Simplify: \(\dfrac{3}{7}\)(u + 21).

    Answer

    \(\frac{3}{7}u +9 \)

    Example \(\PageIndex{5}\):

    Simplify: \(8 \left(\dfrac{3}{8}x + \dfrac{1}{4}\right)\).

    Solution

    CNX_BMath_Figure_07_03_028_img-01.png

    Distribute. $$8 \cdot \dfrac{3}{8}x + 8 \cdot \dfrac{1}{4}$$
    Multiply. $$3x + 2$$
    Exercise \(\PageIndex{9}\):

    Simplify: \(6 \left(\dfrac{5}{6}y + \dfrac{1}{2}\right)\).

    Answer

    5y + 3

    Exercise \(\PageIndex{10}\):

    Simplify: \(12 \left(\dfrac{1}{3}n + \dfrac{3}{4}\right)\).

    Answer

    4n + 9

    Using the Distributive Property as shown in the next example will be very useful when we solve money applications later.

    Example \(\PageIndex{6}\):

    Simplify: 100(0.3 + 0.25q).

    Solution

    CNX_BMath_Figure_07_03_029_img-01.png

    Distribute. $$100(0.3) + 100(0.25q)$$
    Multiply. $$30 + 25q$$
    Exercise \(\PageIndex{11}\):

    Simplify: 100(0.7 + 0.15p).

    Answer

    70 + 15p

    Exercise \(\PageIndex{12}\):

    Simplify: 100(0.04 + 0.35d).

    Answer

    4 + 35d

    In the next example we’ll multiply by a variable. We’ll need to do this in a later chapter.

    Example \(\PageIndex{7}\):

    Simplify: \(m(n − 4)\).

    Solution

    CNX_BMath_Figure_07_03_030_img-01.png

    Distribute. $$m \cdot n - m \cdot 4$$
    Multiply. $$mn - 4m$$

    Notice that we wrote m • 4 as 4m. We can do this because of the Commutative Property of Multiplication. When a term is the product of a number and a variable, we write the number first.

    Exercise \(\PageIndex{13}\):

    Simplify: r(s − 2).

    Answer

    rs - 2r

    Exercise \(\PageIndex{14}\):

    Simplify: y(z − 8).

    Answer

    yz - 8y

    The next example will use the ‘backwards’ form of the Distributive Property, (b + c)a = ba + ca.

    Example \(\PageIndex{8}\):

    Simplify: (x + 8)p.

    Solution

    CNX_BMath_Figure_07_03_031_img-01.png

    Distribute. $$px + 8p$$
    Exercise \(\PageIndex{15}\):

    Simplify: (x + 2)p.

    Answer

    xp + 2p

    Exercise \(\PageIndex{16}\):

    Simplify: (y + 4)q.

    Answer

    yq + 4q

    When you distribute a negative number, you need to be extra careful to get the signs correct.

    Example \(\PageIndex{9}\):

    Simplify: −2(4y + 1).

    Solution

    CNX_BMath_Figure_07_03_032_img-01.png

    Distribute. $$-2 \cdot 4y + (-2) \cdot 1$$
    Simplify. $$-8y - 2$$
    Exercise \(\PageIndex{17}\):

    Simplify: −3(6m + 5).

    Answer

    -18m - 15

    Exercise \(\PageIndex{18}\):

    Simplify: −6(8n + 11).

    Answer

    -48n - 66

    Example \(\PageIndex{10}\):

    Simplify: −11(4 − 3a).

    Solution

    Distribute. $$-11 \cdot 4 - (-11) \cdot 3a$$
    Multiply. $$-44 - (-33a)$$
    Simplify. $$-44 + 33a$$

    You could also write the result as 33a − 44. Do you know why?

    Exercise \(\PageIndex{19}\):

    Simplify: −5(2 − 3a).

    Answer

    -10 + 15a

    Exercise \(\PageIndex{20}\):

    Simplify: −7(8 − 15y).

    Answer

    -56 + 105y

    In the next example, we will show how to use the Distributive Property to find the opposite of an expression. Remember, −a = −1 • a.

    Example \(\PageIndex{11}\):

    Simplify: −(y + 5).

    Solution

    Multiplying by −1 results in the opposite. $$-1 (y + 5)$$
    Distribute. $$-1 \cdot y + (-1) \cdot 5$$
    Simplify. $$-y + (-5)$$
    Simplify. $$-y -5$$
    Exercise \(\PageIndex{21}\):

    Simplify: −(z − 11).

    Answer

    -z + 11

    Exercise \(\PageIndex{22}\):

    Simplify: −(x − 4).

    Answer

    -x + 4

    Sometimes we need to use the Distributive Property as part of the order of operations. Start by looking at the parentheses. If the expression inside the parentheses cannot be simplified, the next step would be multiply using the distributive property, which removes the parentheses. The next two examples will illustrate this.

    Example \(\PageIndex{12}\):

    Simplify: 8 − 2(x + 3).

    Solution

    Distribute. $$8 - 2 \cdot x - 2 \cdot 3$$
    Multiply. $$8 - 2x - 6$$
    Combine like terms. $$-2x + 2$$
    Exercise \(\PageIndex{23}\):

    Simplify: 9 − 3(x + 2).

    Answer

    -3x + 3

    Exercise \(\PageIndex{24}\):

    Simplify: 7x − 5(x + 4).

    Answer

    2x - 20

    Example \(\PageIndex{13}\):

    Simplify: 4(x − 8) − (x + 3).

    Solution

    Distribute. $$4x - 32 - x - 3$$
    Combine like terms. $$3x - 35$$
    Exercise \(\PageIndex{25}\):

    Simplify: 6(x − 9) − (x + 12).

    Answer

    5x - 66

    Exercise \(\PageIndex{26}\):

    Simplify: 8(x − 1) − (x + 5).

    Answer

    7x - 13

    Evaluate Expressions Using the Distributive Property

    Some students need to be convinced that the Distributive Property always works. In the examples below, we will practice evaluating some of the expressions from previous examples; in part (a), we will evaluate the form with parentheses, and in part (b) we will evaluate the form we got after distributing. If we evaluate both expressions correctly, this will show that they are indeed equal.

    Example \(\PageIndex{14}\):

    When y = 10 evaluate: (a) 6(5y + 1) (b) 6 • 5y + 6 • 1.

    Solution

    (a) 6(5y + 1)

    Substitute \(\textcolor{red}{10}\) for y. $$6(5 \cdot \textcolor{red}{10} + 1)$$
    Simplify in the parentheses. $$6(51)$$
    Multiply. $$306$$

    (b) 6 • 5y + 6 • 1

    Substitute \(\textcolor{red}{10}\) for y. $$6 \cdot 5 \cdot \textcolor{red}{10} + 6 \cdot 1$$
    Simplify. $$300 + 6$$
    Add. $$306$$

    Notice, the answers are the same. When y = 10, 6(5y + 1) = 6 • 5y + 6 • 1. Try it yourself for a different value of y.

    Exercise \(\PageIndex{27}\):

    Evaluate when w = 3: (a) 5(5w + 9) (b) 5 • 5w + 5 • 9.

    Answer a

    \(120\)

    Answer b

    \(120\)

    Exercise \(\PageIndex{28}\):

    Evaluate when y = 2: (a) 9(3y + 8) (b) 9 • 3y + 9 • 8.

    Answer a

    \(126\)

    Answer b

    \(126\)

    Example \(\PageIndex{15}\):

    When y = 3, evaluate (a) −2(4y + 1) (b) −2 • 4y + (−2) • 1.

    Solution

    (a) −2(4y + 1)

    Substitute \(\textcolor{red}{3}\) for y. $$-2(4 \cdot \textcolor{red}{3} + 1)$$
    Simplify in the parentheses. $$-2(13)$$
    Multiply. $$-26$$

    (b) −2 • 4y + (−2) • 1

    Substitute \(\textcolor{red}{3}\) for y. $$-2 \cdot 4 \cdot \textcolor{red}{3} + (-2) \cdot 1$$
    Multiply. $$-24 - 2$$
    Subtract. $$-26$$
    The answers are the same when y = 3. $$-2(4y + 1) = -8y - 2$$
    Exercise \(\PageIndex{29}\):

    Evaluate when n = −2: (a) −6(8n + 11) (b) −6 • 8n + (−6) • 11.

    Answer a

    \(30\)

    Answer b

    \(30\)

    Exercise \(\PageIndex{30}\):

    Evaluate when m = −1: (a) −3(6m + 5) (b) −3 • 6m + (−3) • 5.

    Answer a

    \(3\)

    Answer b

    \(3\)

    Example \(\PageIndex{16}\):

    When y = 35 evaluate (a) −(y + 5) and (b) −y − 5 to show that −(y + 5) = −y − 5.

    Solution

    (a) −(y + 5)

    Substitute \(\textcolor{red}{35}\) for y. $$-(\textcolor{red}{35} + 5)$$
    Add in the parentheses. $$-(40)$$
    Simplify. $$-40$$

    (b) −y − 5

    Substitute \(\textcolor{red}{35}\) for y. $$-\textcolor{red}{35} - 5$$
    Simplify. $$-40$$
    The answers are the same when y = 35, demonstrating that $$-(y + 5) = -y - 5$$
    Exercise \(\PageIndex{31}\):

    Evaluate when x = 36: (a) −(x − 4) (b) −x + 4 to show that −(x − 4) = − x + 4.

    Answer a

    \(-32\)

    Answer b

    \(-32\)

    Exercise \(\PageIndex{32}\):

    Evaluate when z = 55: (a) −(z − 10) (b) −z + 10 to show that −(z − 10) = − z + 10.

    Answer a

    \(-45\)

    Answer b

    \(-45\)

    ACCESS ADDITIONAL ONLINE RESOURCES

    Model Distribution

    The Distributive Property

    Practice Makes Perfect

    Simplify Expressions Using the Distributive Property

    In the following exercises, simplify using the distributive property.

    1. 4(x + 8)
    2. 3(a + 9)
    3. 8(4y + 9)
    4. 9(3w + 7)
    5. 6(c − 13)
    6. 7(y − 13)
    7. 7(3p − 8)
    8. 5(7u − 4)
    9. \(\dfrac{1}{2}\)(n + 8)
    10. \(\dfrac{1}{3}\)(u + 9)
    11. \(\dfrac{1}{4}\)(3q + 12)
    12. \(\dfrac{1}{5}\)(4m + 20)
    13. \(9 \left(\dfrac{5}{9} y − \dfrac{1}{3}\right)\)
    14. \(10 \left(\dfrac{3}{10} x − \dfrac{2}{5}\right)\)
    15. \(12 \left(\dfrac{1}{4} + \dfrac{2}{3} r\right)\)
    16. \(12 \left(\dfrac{1}{6} + \dfrac{3}{4} s\right)\)
    17. r(s − 18)
    18. u(v − 10)
    19. (y + 4)p
    20. (a + 7)x
    21. −2(y + 13)
    22. −3(a + 11)
    23. −7(4p + 1)
    24. −9(9a + 4)
    25. −3(x − 6)
    26. −4(q − 7)
    27. −9(3a − 7)
    28. −6(7x − 8)
    29. −(r + 7)
    30. −(q + 11)
    31. −(3x − 7)
    32. −(5p − 4)
    33. 5 + 9(n − 6)
    34. 12 + 8(u − 1)
    35. 16 − 3(y + 8)
    36. 18 − 4(x + 2)
    37. 4 − 11(3c − 2)
    38. 9 − 6(7n − 5)
    39. 22 − (a + 3)
    40. 8 − (r − 7)
    41. −12 − (u + 10)
    42. −4 − (c − 10)
    43. (5m − 3) − (m + 7)
    44. (4y − 1) − (y − 2)
    45. 5(2n + 9) + 12(n − 3)
    46. 9(5u + 8) + 2(u − 6)
    47. 9(8x − 3) − (−2)
    48. 4(6x − 1) − (−8)
    49. 14(c − 1) − 8(c − 6)
    50. 11(n − 7) − 5(n − 1)
    51. 6(7y + 8) − (30y − 15)
    52. 7(3n + 9) − (4n − 13)

    Evaluate Expressions Using the Distributive Property

    In the following exercises, evaluate both expressions for the given value.

    1. If v = −2, evaluate
      1. 6(4v + 7)
      2. 6 · 4v + 6 · 7
    2. If u = −1, evaluate
      1. 8(5u + 12)
      2. 8 · 5u + 8 · 12
    3. If n = \(\dfrac{2}{3}\), evaluate
      1. \(3 \left(n + \dfrac{5}{6}\right)\)
      2. 3 • n + 3 • \(\dfrac{5}{6}\)
    4. If y = 3 4 , evaluate
      1. 4 ⎛ ⎝ y + 3 8 ⎞ ⎠
      2. 4 • y + 4 • \(\dfrac{3}{8}\)
    5. If y = \(\dfrac{7}{12}\), evaluate
      1. −3(4y + 15)
      2. 3 • 4y + (−3) • 15
    6. If p = \(\dfrac{23}{30}\), evaluate
      1. −6(5p + 11)
      2. −6 • 5p + (−6) • 11
    7. If m = 0.4, evaluate
      1. −10(3m − 0.9)
      2. −10 • 3m − (−10)(0.9)
    8. If n = 0.75, evaluate
      1. −100(5n + 1.5)
      2. −100 • 5n + (−100)(1.5)
    9. If y = −25, evaluate
      1. −(y − 25)
      2. −y + 25
    10. If w = −80, evaluate
      1. −(w − 80)
      2. −w + 80
    11. If p = 0.19, evaluate
      1. −(p + 0.72)
      2. −p − 0.72
    12. If q = 0.55, evaluate
      1. −(q + 0.48)
      2. −q − 0.48

    Everyday Math

    1. Buying by the case Joe can buy his favorite ice tea at a convenience store for $1.99 per bottle. At the grocery store, he can buy a case of 12 bottles for $23.88.
      1. Use the distributive property to find the cost of 12 bottles bought individually at the convenience store. (Hint: notice that $1.99 is $2 − $0.01.)
      2. Is it a bargain to buy the iced tea at the grocery store by the case?
    2. Multi-pack purchase Adele’s shampoo sells for $3.97 per bottle at the drug store. At the warehouse store, the same shampoo is sold as a 3-pack for $10.49.
      1. Show how you can use the distributive property to find the cost of 3 bottles bought individually at the drug store.
      2. How much would Adele save by buying the 3-pack at the warehouse store?

    Writing Exercises

    1. Simplify \(8 \left(x − \dfrac{1}{4}\right)\) using the distributive property and explain each step.
    2. Explain how you can multiply 4($5.97) without paper or a calculator by thinking of $5.97 as 6 − 0.03 and then using the distributive property.

    Self Check

    (a) After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

    CNX_BMath_Figure_AppB_042.jpg

    (b) What does this checklist tell you about your mastery of this section? What steps will you take to improve?

    Contributors and Attributions


    This page titled 7.4: Distributive Property is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax.

    • Was this article helpful?