A.9 Inverse Trigonometric Functions
- Page ID
- 89657
Some of you may not have studied inverse trigonometric functions in highschool, however we still expect you to know them by the end of the course.
\[ \arcsin x \nonumber \]
Domain: \(-1 \leq x \leq 1\)
Range: \(-\frac{\pi}{2} \leq \arcsin x \leq \frac{\pi}{2}\)
\[ \arccos x \nonumber \]
Domain: \(-1 \leq x \leq 1\)
Range: \(0 \leq \arccos x \leq \pi\)
\[ \arctan x \nonumber \]
Domain: all real numbers
Range: \(-\frac{\pi}{2} \lt \arctan x \lt \frac{\pi}{2}\)
Since these functions are inverses of each other we have
\begin{align*} \arcsin(\sin \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\\ \arccos(\cos \theta) &= \theta & 0 \leq \theta \leq \pi\\ \arctan(\tan \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \end{align*}
and also
\begin{align*} \sin(\arcsin x) &= x & -1 \leq x \leq 1\\ \cos(\arccos x) &= x & -1 \leq x \leq 1\\ \tan(\arctan x) &= x & \text{any real } x \end{align*}
\[ \arccsc x \nonumber \]
Domain: \(|x|\ge 1\)
Range: \(-\frac{\pi}{2} \leq \arccsc x \leq \frac{\pi}{2}\)
\[ \arccsc x \ne 0 \nonumber \]
\[ \arcsec x \nonumber \]
Domain: \(|x|\ge 1\)
Range: \(0 \leq \arcsec x \leq \pi\)
\[ \arcsec x \ne \frac{\pi}{2} \nonumber \]
\[ \arccot x \nonumber \]
Domain: all real numbers
Range: \(0 \lt \arccot x \lt \pi\)
Again
\begin{align*} \arccsc(\csc \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},\ \theta\ne 0\\ \arcsec(\sec \theta) & = \theta & 0 \leq \theta \leq \pi,\ \theta\ne \frac{\pi}{2}\\ \arccot(\cot \theta) & = \theta & 0 \lt \theta \lt \pi \end{align*}
and
\begin{align*} \csc(\arccsc x) &= x & |x|\ge 1\\ \sec(\arcsec x) &= x & |x|\ge 1\\ \cot(\arccot x) &= x & \text{any real } x \end{align*}