A.14 Highschool Material You Should be Able to Derive
- Page ID
- 89662
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
- Graphs of \(\csc\theta, \sec \theta\) and \(\cot \theta\text{:}\)
\csc \theta
\nonumber \]
\sec \theta
\nonumber \]
\cot \theta
\nonumber \]
- More Pythagoras
\begin{align*} \sin^2\theta + \cos^2 \theta &=1 & \xmapsto{\text{divide by $\cos^2\theta$}}&& \tan^2\theta + 1 &= \sec^2\theta\\ \sin^2\theta + \cos^2 \theta &=1 & \xmapsto{\text{divide by $\sin^2\theta$}}&& 1 + \cot^2 \theta &=\csc^2\theta \end{align*}
- Sine — double angle (set \(\beta =\alpha\) in sine angle addition formula)
\begin{align*} \sin(2\alpha) &= 2\sin(\alpha)\cos(\alpha) \end{align*}
- Cosine — double angle (set \(\beta =\alpha\) in cosine angle addition formula)
\begin{align*} \cos(2\alpha) &= \cos^2(\alpha) - \sin^2(\alpha)\\ &= 2\cos^2(\alpha) - 1 & \text{(use $\sin^2(\alpha)= 1-\cos^2(\alpha)$)}\\ &= 1 - 2\sin^2(\alpha) & \text{(use $\cos^2(\alpha)= 1-\sin^2(\alpha)$)} \end{align*}
- Composition of trigonometric and inverse trigonometric functions:
\begin{align*} \cos( \arcsin x) &= \sqrt{1-x^2} & \sec( \arctan x) &= \sqrt{1+x^2} \end{align*}
and similar expressions.