# 3.3: The Product Rule

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Consider the product of two simple functions, say $$f(x)=(x^2+1)(x^3-3x)$$. An obvious guess for the derivative of $$f$$ is the product of the derivatives of the constituent functions: $$(2x)(3x^2-3)=6x^3-6x$$.

Is this correct? We can easily check, by rewriting $$f$$ and doing the calculation in a way that is known to work. First, $$f(x)=x^5-3x^3+x^3-3x=x^5-2x^3-3x$$, and then $$f'(x)=5x^4-6x^2-3$$. Not even close! What went "wrong''? Well, nothing really, except the guess was wrong.

So the derivative of $$f(x)g(x)$$ is NOT as simple as $$f'(x)g'(x)$$. Surely there is some rule for such a situation? There is, and it is instructive to "discover'' it by trying to do the general calculation even without knowing the answer in advance.

\eqalign{ {d\over dx}(&f(x)g(x)) = \lim_{\Delta x \to0} {f(x+\Delta x)g(x+\Delta x) - f(x)g(x)\over \Delta x}\cr& =\lim_{\Delta x \to0} {f(x+\Delta x)g(x+\Delta x)-f(x+\Delta x)g(x) + f(x+\Delta x)g(x)- f(x)g(x)\over \Delta x}\cr & =\lim_{\Delta x \to0} {f(x+\Delta x)g(x+\Delta x)-f(x+\Delta x)g(x)\over \Delta x} + \lim_{\Delta x \to0} {f(x+\Delta x)g(x)- f(x)g(x)\over \Delta x}\cr & =\lim_{\Delta x \to0} f(x+\Delta x){ g(x+\Delta x)-g(x)\over \Delta x} + \lim_{\Delta x \to0} {f(x+\Delta x)- f(x)\over \Delta x}g(x)\cr & =f(x)g'(x) + f'(x)g(x)\cr }

A couple of items here need discussion. First, we used a standard trick, "add and subtract the same thing'', to transform what we had into a more useful form. After some rewriting, we realize that we have two limits that produce $$f'(x)$$ and $$g'(x)$$. Of course, $$f'(x)$$ and $$g'(x)$$ must actually exist for this to make sense. We also replaced $$\lim_{\Delta x\to0}f(x+\Delta x)$$ with $$f(x)$$---why is this justified?

What we really need to know here is that $$\lim_{\Delta x\to 0}f(x+\Delta x)=f(x)$$, or in the language of section 2.5, that $$f$$ is continuous at $$x$$. We already know that $$f'(x)$$ exists (or the whole approach, writing the derivative of $$fg$$ in terms of $$f'$$ and $$g'$$, doesn't make sense). This turns out to imply that $$f$$ is continuous as well. Here's why:

\eqalign{ \lim_{\Delta x\to 0} f(x+\Delta x) &= \lim_{\Delta x\to 0} (f(x+\Delta x) -f(x) + f(x))\cr& = \lim_{\Delta x\to 0} {f(x+\Delta x) -f(x)\over \Delta x}\Delta x + \lim_{\Delta x\to 0} f(x)\cr& =f'(x)\cdot 0 + f(x) = f(x)\cr }

To summarize: the product rule says that

${d\over dx}(f(x)g(x)) = f(x)g'(x) + f'(x)g(x).$

Returning to the example we started with, let

$f(x)=(x^2+1)(x^3-3x).$

Then

$f'(x)=(x^2+1)(3x^2-3)+(2x)(x^3-3x)=3x^4-3x^2+3x^2-3+2x^4-6x^2= 5x^4-6x^2-3,$

as before. In this case it is probably simpler to multiply $$f(x)$$ out first, then compute the derivative; here's an example for which we really need the product rule.

Example $$\PageIndex{1}$$

Compute the derivative of $$f(x)=x^2\sqrt{625-x^2}$$.

Solution

${d\over dx}\sqrt{625-x^2}={-x\over\sqrt{625-x^2}}.\nonumber$

Now

\begin{align*} f'(x)&=x^2{-x\over\sqrt{625-x^2}}+2x\sqrt{625-x^2} \\[4pt]&= {-x^3+2x(625-x^2)\over \sqrt{625-x^2}} \\[4pt] &= {-3x^3+1250x\over \sqrt{625-x^2}}. \end{align*}

## Contributors

• Integrated by Justin Marshall.

This page titled 3.3: The Product Rule is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Guichard via source content that was edited to the style and standards of the LibreTexts platform.