Skip to main content
Mathematics LibreTexts

2.15: Homework- Examples of the Definition of the Derivative

  • Page ID
    88639
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1. Simplify each expression involving fractions or rational expressions.
      1. \((x+1) \cdot \left( \frac{1}{3} + \frac{x}{x+1} \right)\)
        \(=\frac{x+1}{3} + x = \frac{4x+1}{3}\)
        ans
      2. \(\cfrac{\cfrac{1}{3} + 1}{1-\cfrac{1}{3}}\)
        \(2\)
        ans
      3. \(\cfrac{x + 1}{\cfrac{1}{x}}\)
        \(x^2 + x\)
        ans
      4. \(\cfrac{\cfrac{1}{x} - \cfrac{1}{x+1}}{\cfrac{1}{x} + \cfrac{1}{x+1}}\)
        \(\frac{1}{2x+1}\)
        ans
      5. \(\cfrac{\cfrac{2}{x} - \cfrac{1}{x}}{\cfrac{1 - y}{y}}\)
        \(\frac{y}{x - xy}\)
        ans
    2. In each case, use the definition of the derivative to find \(f'(x)\) (in other words, take the derivative!)
      1. \(f(x) = 3x - 5 \)
        \(3\)
        ans
      2. \(f(x) = \frac{1}{2} x + 1 \)
        quicklatex.com-92759ad21f5aa105eb2ef212fdb68ffa_l3.png
        ans
      3. \(f(x) = 2 x^2\)
        \(4x\)
        ans
      4. \(f(x) = (x^2 + x)\)
        \(2x + 1\)
        ans
      5. \(\frac{d}{dx} (e^x)\) (hint: from yesterday’s homework, we have \(\lim_{h \to 0} \frac{e^h - 1}{h} = 1\))
        \(e^x\)
        ans
      6. \(f(x) = x^3\)
        \(x^3\)
        ans
    3. In each case, use the definition of the derivative to find \(f'(x)\) (in other words, take the derivative!). Each of these is like one of the “hard problems” (click here)
      1. \(f(x) = 2x^4\)
        \(8x^3\)
        ans
      2. \(f(x) = \sqrt{2x}\)
        \(\frac{1}{\sqrt{2x}}\)
        ans
      3. \(f(x) = \frac{2}{x} \)
        \(-\frac{2}{x^2}\)
        ans
      4. \(f(x) = \sqrt{x+1}\)
        \(\frac{1}{2 \sqrt{x+1}}\)
        ans
      5. \(f(x) = \frac{1}{x+1} \)
        \(-\frac{1}{(x+1)^2}\)
        ans
      6. \(f(x) = \frac{1}{\sqrt{x}}\)
        \(\frac{-1}{2 x \sqrt{x}}\)
        ans
    4. Recall the derivative of \(f(x) = x^2\) is given by \(2x\).
      1. Show that the derivative of \(g(x) = x^2+1\) is \(2x\) using the definition of the derivative. Can you find an intuitive reason why \(f(x)\) and \(g(x)\) would have the same derivative?
        Adding a constant moves the curve up or down, but that shift does not affect the slope of the tangent line
        ans
      2. Find another function whose derivative is \(2x\), other than \(f(x)\) and \(g(x)\).
        \(x^2 + c\) for any value \(c\)
        ans

    This page titled 2.15: Homework- Examples of the Definition of the Derivative is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tyler Seacrest via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.