Skip to main content
Mathematics LibreTexts

3.12: Homework- Chain Rule

  • Page ID
    88652
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1. Watch this video from Khan Academy:
      Chain Rule Definition and example
    2. Take the derivative of the following functions, each of which involves the chain rule.
      1. \(a(x) = (x^2 + 5)^{20}\)
        \(40 x (x^2 + 5)^{19}\)
        ans
      2. \(b(x) = e^{x^2}\)
        \(2x e^{x^2}\)
        ans
      3. \(c(x) = (kx + r)^n\) for constants \(k\), \(r\), \(n\).
        \(k n (kx + r)^{n-1}\)
        ans
      4. \(d(x) = (\ln(x))^3 + \ln(x^3)\)
        \(\frac{3 (\ln(x))^2}{x} + \frac{3}{x}\)
        ans
      5. \(e(x) = \sin(\cos(x))\)
        \(-\sin(x) \cos(\cos(x))\)
        ans
      6. \(f(x) = e^{\sin(x) + \cos(x)}\)
        \((\cos(x) - \sin(x)) e^{\sin(x) + \cos(x)}\)
        ans
      7. \(g(x) = \sqrt{3x^2 - 5x + 6}\)
        \(\frac{6x - 5}{2 \sqrt{3x^2 - 5x + 6}}\)
        ans
      8. \(h(x) = e^{-x}\)
        \(-e^{-x}\)
        ans
    3. For each problem, try simplifying the logarithm first, then taking the derivative.
      1. \(\frac{d}{dx} \ln(x^3)\)
        \(\frac{3}{x}\)
        ans
      2. \(\frac{d}{dx} \ln(x e^x)\)
        \(\frac{1}{x} + 1\)
        ans
    4. Use logarithm rules to explain why \(\frac{d}{dx} \ln(e^5 \cdot x) = \frac{d}{dx} \ln(x)\).
      Using logarithm rules, we have that \(ln(e^5 \cdot x) = \ln(x) + \ln(e^5) = \ln(x) + 5\). This has the same derivative as \(\ln(x)\) since we are just adding a constant.
      ans
    5. Recall that \(\ln(x)\) and \(e^x\) are inverse functions. This means that \(\ln(e^x) = x\), and \(e^{\ln(x)} = x\) (that is, the \(e\) and the \(\ln\) cancel out if you do one right after the other). This fact allows us to compute \(\frac{d}{dx} 2^x\).
      1. Simplify \(e^{\ln(2)}\)
        \(=2\)
        ans
      2. Simplify \(\ln(e^2)\).
        \(=2\)
        ans
      3. Simplify \(e^{\ln(2) + x}\)
        \(2e^x\)
        ans
      4. Simplify \((e^{\ln(2) x})\)
        \(2^x\)
        ans
      5. Use part (d) to compute \(\frac{d}{dx} 2^x\).
        \(\ln(2) 2^x\)
        ans

    This page titled 3.12: Homework- Chain Rule is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tyler Seacrest via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?