5.4: Homework- Introduction to Differential Equations
- Page ID
- 88668
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- Describe as best you can at this point in your own words what a differential equation is.
- Following earnings example from the previous chapter, if the number of employees in a company is growing at a rate of \(0.05\) times the number of employees, what is a differential equation that describes this situation?
\(E'(t) = 0.05 E(t)\).ans
- Verify the function \(f(x) = e^x - x - 1\) solves the differential equation:
\(f'(x) = f(x) + x\)
We see\[\begin{align*} f'(x) & = f(x) + x \\ e^x - 1 & = (e^x - x - 1) + x \\ e^x - 1 & = e^x - 1 \end{align*}\]
as desired.
ans - Verify the function \(f(x) = 2 \sqrt{x}\) satisfies the differential equation:
\(f'(x) = \frac{2}{f(x)}.\)
We seeas desired.
ans - For each differential equation, find \(f'(t)\) for the given value of \(t\), or state there is not enough information.
- Suppose \(f'(t) = 3 f(t) + 5\) and \(f(3) = -1\). Find \(f'(3)\).
\(2\)ans
- Suppose \(f'(t) = t + f(t)\), and \(f(7) = 1\). Find \(f'(7)\).
\(8\)ans
- Suppose \(f'(t) = \frac{1}{ \sqrt{f(t)} }\) and \(f(0) = 9\). Find \(f'(0)\).
\(\frac{1}{3}\)ans
- Suppose \(f'(t) = e^{-f(t)}\) and \(f(0) = 1\). Find \(f'(1)\).
Not enough information.ans
- Suppose \(f'(t) = 3 f(t) + 5\) and \(f(3) = -1\). Find \(f'(3)\).
- For each relationship between the value of a function and its derivative, write down a differential equation. For example, if I said “a function is growing at a rate equal to seven times the value of the function” you’d write down \(f'(t) = 7 f(t)\).
- A function is growing at a rate equal to twice the function value.
\(f'(t) = 2 f(t)\)ans
- A function is growing at a rate equal to the square root of the function value.
\(f'(t) = \sqrt{f(t)}\)ans
- A function is growing at a rate equal to \(t\) times the function value.
\(f'(t) = t f(t)\)ans
- A function is accelerating at a rate equal to the sum of the function value and how quickly the function is growing.
\(f''(t) = f'(t) + f(t)\).ans
- A function is growing at a rate equal to twice the function value.
- Verify that the given solution to each differential equation is correct.
- Differential equation \(f'(t) = f(t) + 3\), solution \(f(t) = 3 e^t - 3\).
\[\begin{align*} f'(t) & = f(t) + 3 \\ \frac{d}{dt}(3e^t - 3) & = (3e^t - 3) + 3 \\ 3e^t & = 3e^t \end{align*}\]
ans - Differential equation \(f'(t) = 4\sqrt{f(t)}\), solution \(f(t) = 4 t^2\).
\[\begin{align*} f'(t) & = 4 \sqrt{f(t)} \\ \frac{d}{dt}(4 t^2) & = 4 \sqrt{4 t^2} \\ 8t & = 4(2t) \\ 8t & = 8t. \end{align*}\]
ans - Differential equation \(f'(t) = (f(t))^2\), solution \(f(t) = -t^{-1}\).
\[\begin{align*} f'(t) & = (f(t))^2 \\ \frac{d}{dt} (-t^{-1}) & = (-t^{-1})^2 \\ t^{-2} & = t^{-2} \end{align*}\]
ans - Differential equation \(f'(t) = e^{-f(t)}\), solution \(f(t) = \ln(t)\).
\[\begin{align*} f'(t) & = e^{-f(t)} \\ \frac{d}{dt} \ln(t) & = e^{-\ln(t)} \\ \frac{1}{t} & = \frac{1}{e^{\ln(t)}} \\ \frac{1}{t} & = \frac{1}{t} \end{align*}\]
ans
- Differential equation \(f'(t) = f(t) + 3\), solution \(f(t) = 3 e^t - 3\).