Skip to main content
Mathematics LibreTexts

5.4: Homework- Introduction to Differential Equations

  • Page ID
    88668
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    1. Describe as best you can at this point in your own words what a differential equation is.
    2. Following earnings example from the previous chapter, if the number of employees in a company is growing at a rate of \(0.05\) times the number of employees, what is a differential equation that describes this situation?
      \(E'(t) = 0.05 E(t)\).
      ans
    3. Verify the function \(f(x) = e^x - x - 1\) solves the differential equation:

      \(f'(x) = f(x) + x\)

      We see

      \[\begin{align*} f'(x) & = f(x) + x \\ e^x - 1 & = (e^x - x - 1) + x \\ e^x - 1 & = e^x - 1 \end{align*}\]

      as desired.

      ans
    4. Verify the function \(f(x) = 2 \sqrt{x}\) satisfies the differential equation:

      \(f'(x) = \frac{2}{f(x)}.\)

      We see

      as desired.

      ans
    5. For each differential equation, find \(f'(t)\) for the given value of \(t\), or state there is not enough information.
      1. Suppose \(f'(t) = 3 f(t) + 5\) and \(f(3) = -1\). Find \(f'(3)\).
        \(2\)
        ans
      2. Suppose \(f'(t) = t + f(t)\), and \(f(7) = 1\). Find \(f'(7)\).
        \(8\)
        ans
      3. Suppose \(f'(t) = \frac{1}{ \sqrt{f(t)} }\) and \(f(0) = 9\). Find \(f'(0)\).
        \(\frac{1}{3}\)
        ans
      4. Suppose \(f'(t) = e^{-f(t)}\) and \(f(0) = 1\). Find \(f'(1)\).
        Not enough information.
        ans
    6. For each relationship between the value of a function and its derivative, write down a differential equation. For example, if I said “a function is growing at a rate equal to seven times the value of the function” you’d write down \(f'(t) = 7 f(t)\).
      1. A function is growing at a rate equal to twice the function value.
        \(f'(t) = 2 f(t)\)
        ans
      2. A function is growing at a rate equal to the square root of the function value.
        \(f'(t) = \sqrt{f(t)}\)
        ans
      3. A function is growing at a rate equal to \(t\) times the function value.
        \(f'(t) = t f(t)\)
        ans
      4. A function is accelerating at a rate equal to the sum of the function value and how quickly the function is growing.
        \(f''(t) = f'(t) + f(t)\).
        ans
    7. Verify that the given solution to each differential equation is correct.
      1. Differential equation \(f'(t) = f(t) + 3\), solution \(f(t) = 3 e^t - 3\).

        \[\begin{align*} f'(t) & = f(t) + 3 \\ \frac{d}{dt}(3e^t - 3) & = (3e^t - 3) + 3 \\ 3e^t & = 3e^t \end{align*}\]

        ans
      2. Differential equation \(f'(t) = 4\sqrt{f(t)}\), solution \(f(t) = 4 t^2\).

        \[\begin{align*} f'(t) & = 4 \sqrt{f(t)} \\ \frac{d}{dt}(4 t^2) & = 4 \sqrt{4 t^2} \\ 8t & = 4(2t) \\ 8t & = 8t. \end{align*}\]

        ans
      3. Differential equation \(f'(t) = (f(t))^2\), solution \(f(t) = -t^{-1}\).

        \[\begin{align*} f'(t) & = (f(t))^2 \\ \frac{d}{dt} (-t^{-1}) & = (-t^{-1})^2 \\ t^{-2} & = t^{-2} \end{align*}\]

        ans
      4. Differential equation \(f'(t) = e^{-f(t)}\), solution \(f(t) = \ln(t)\).

        \[\begin{align*} f'(t) & = e^{-f(t)} \\ \frac{d}{dt} \ln(t) & = e^{-\ln(t)} \\ \frac{1}{t} & = \frac{1}{e^{\ln(t)}} \\ \frac{1}{t} & = \frac{1}{t} \end{align*}\]

        ans

    This page titled 5.4: Homework- Introduction to Differential Equations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tyler Seacrest via source content that was edited to the style and standards of the LibreTexts platform.