Skip to main content
Mathematics LibreTexts

5.4: Homework- Introduction to Differential Equations

  • Page ID
    88668
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1. Describe as best you can at this point in your own words what a differential equation is.
    2. Following earnings example from the previous chapter, if the number of employees in a company is growing at a rate of \(0.05\) times the number of employees, what is a differential equation that describes this situation?
      \(E'(t) = 0.05 E(t)\).
      ans
    3. Verify the function \(f(x) = e^x - x - 1\) solves the differential equation:

      \(f'(x) = f(x) + x\)

      We see

      \[\begin{align*} f'(x) & = f(x) + x \\ e^x - 1 & = (e^x - x - 1) + x \\ e^x - 1 & = e^x - 1 \end{align*}\]

      as desired.

      ans
    4. Verify the function \(f(x) = 2 \sqrt{x}\) satisfies the differential equation:

      \(f'(x) = \frac{2}{f(x)}.\)

      We see

      as desired.

      ans
    5. For each differential equation, find \(f'(t)\) for the given value of \(t\), or state there is not enough information.
      1. Suppose \(f'(t) = 3 f(t) + 5\) and \(f(3) = -1\). Find \(f'(3)\).
        \(2\)
        ans
      2. Suppose \(f'(t) = t + f(t)\), and \(f(7) = 1\). Find \(f'(7)\).
        \(8\)
        ans
      3. Suppose \(f'(t) = \frac{1}{ \sqrt{f(t)} }\) and \(f(0) = 9\). Find \(f'(0)\).
        \(\frac{1}{3}\)
        ans
      4. Suppose \(f'(t) = e^{-f(t)}\) and \(f(0) = 1\). Find \(f'(1)\).
        Not enough information.
        ans
    6. For each relationship between the value of a function and its derivative, write down a differential equation. For example, if I said “a function is growing at a rate equal to seven times the value of the function” you’d write down \(f'(t) = 7 f(t)\).
      1. A function is growing at a rate equal to twice the function value.
        \(f'(t) = 2 f(t)\)
        ans
      2. A function is growing at a rate equal to the square root of the function value.
        \(f'(t) = \sqrt{f(t)}\)
        ans
      3. A function is growing at a rate equal to \(t\) times the function value.
        \(f'(t) = t f(t)\)
        ans
      4. A function is accelerating at a rate equal to the sum of the function value and how quickly the function is growing.
        \(f''(t) = f'(t) + f(t)\).
        ans
    7. Verify that the given solution to each differential equation is correct.
      1. Differential equation \(f'(t) = f(t) + 3\), solution \(f(t) = 3 e^t - 3\).

        \[\begin{align*} f'(t) & = f(t) + 3 \\ \frac{d}{dt}(3e^t - 3) & = (3e^t - 3) + 3 \\ 3e^t & = 3e^t \end{align*}\]

        ans
      2. Differential equation \(f'(t) = 4\sqrt{f(t)}\), solution \(f(t) = 4 t^2\).

        \[\begin{align*} f'(t) & = 4 \sqrt{f(t)} \\ \frac{d}{dt}(4 t^2) & = 4 \sqrt{4 t^2} \\ 8t & = 4(2t) \\ 8t & = 8t. \end{align*}\]

        ans
      3. Differential equation \(f'(t) = (f(t))^2\), solution \(f(t) = -t^{-1}\).

        \[\begin{align*} f'(t) & = (f(t))^2 \\ \frac{d}{dt} (-t^{-1}) & = (-t^{-1})^2 \\ t^{-2} & = t^{-2} \end{align*}\]

        ans
      4. Differential equation \(f'(t) = e^{-f(t)}\), solution \(f(t) = \ln(t)\).

        \[\begin{align*} f'(t) & = e^{-f(t)} \\ \frac{d}{dt} \ln(t) & = e^{-\ln(t)} \\ \frac{1}{t} & = \frac{1}{e^{\ln(t)}} \\ \frac{1}{t} & = \frac{1}{t} \end{align*}\]

        ans

    This page titled 5.4: Homework- Introduction to Differential Equations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tyler Seacrest via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.