Skip to main content
Mathematics LibreTexts

7.1: Power, exponential, trig, and logarithm rules

  • Page ID
    88684
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    We’ve already seen the inverse power rule, but here it is again:

    \(\boxed{\int x^mdx = \frac{x^{m + 1}}{m+1} + C}\)

    Note that this only works if \(m \neq -1\). However, we haven’t seen how this works with fractional and negative powers yet. We’ll do some examples of this.

    We can also “undo” the derivatives for exponential, logarithmic functions, or trigonometric functions.

    \(\boxed{\int e^xdx = e^x + C}\)

    \(\boxed{\int \frac{1}{x}dx = \ln(x) + C}\)

    \(\boxed{\int \sin(x)dx = -\cos(x) + C}\)

    \(\boxed{\int \cos(x)dx = \sin(x) + C}\)

    On to the examples. Recall that \(x^{-m} = \frac{1}{x^m}\) and .

    Power rule with fractional and negative powers
    • Find quicklatex.com-9adff5d5f4ba8e112eb7c04e52d34ef0_l3.png.

      Negative and fractional powers work the same way as the positive powers we’ve been working with. We see

      At this point, let’s just type it into a calculator to get an approximate answer. We see that the integral is about \(\boxed{23.36}\).

    • Find \(\int_1^2 \frac{1}{x^4}dx\).

      This problem becomes an inverse power rule problem if we notice that \(\frac{1}{x^4} = x^{-4}\). We see

      \[\begin{align*} \int_1^2 \frac{1}{x^4}dx & = \int_1^2 x^{-4}dx \\ & = \frac{x^{-5}}{-5} \Big|_1^2 \\ & = -\frac{1}{5x^5} \Big|_1^2 \\ & = \left( -\frac{1}{5(2)^5} \right) - \left( -\frac{1}{5(1)^5} \right) \\ & = -\frac{1}{160} + \frac{1}{5} \\ & = -\frac{1}{160} + \frac{32}{160} \\ & = \boxed{\frac{31}{160}}. \end{align*}\]

    • Find \(\int_{25}^{100} \sqrt{x}dx\).

      If we remember that , this is a power rule problem.

    Now for logarithmic and exponential functions.

    Logarithmic and Exponential functions and integration
    • Find \(\int_1^5 \frac{2}{x}dx\).

      For this problem, you may be tempted to write this as \(2x^{-1}\) and use the inverse power rule. Good instincts, but in this case it won’t work (try it: it leads to division by zero!). So instead, let’s invert the natural logarithm derivative.

      *** QuickLaTeX cannot compile formula:
      \begin{align*}
      \int_1^5 \frac{2}{x}dx & = 2 \int_1^5 \frac{1}{x}dx \\
      & = 2 \left( \ln(x) \right) \Big|_1^5 \\
      & = (2 \ln(5)) - (2 \ln(1)) \\
      & = 2 \ln(5) - 0 \\
      & = 2 \ln(5) \approx \boxed{3.2}.
      \end{align*}
      
      *** Error message:
      Error: get_image_size(): -1
      
    • Find \(\int_{-2}^2 7 e^{x}dx\).

      \(e^x\) is the best function for calculus. Doesn’t change with integration!

      \[\begin{align*} \int_{-2}^2 7 e^xdx & = 7 \int_{-2}^2 e^xdx \\ & = 7 (e^x) \Big|_{-2}^2 \\ & = (7 e^{2}) - (7 e^{-2}) \end{align*}\]

      Not a lot to do to simplify this, but we can get a decimal approximation: \(\approx \boxed{50.78}\).


    This page titled 7.1: Power, exponential, trig, and logarithm rules is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tyler Seacrest via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.