# 7.1: Power, exponential, trig, and logarithm rules

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

We’ve already seen the inverse power rule, but here it is again:

$$\boxed{\int x^mdx = \frac{x^{m + 1}}{m+1} + C}$$

Note that this only works if $$m \neq -1$$. However, we haven’t seen how this works with fractional and negative powers yet. We’ll do some examples of this.

We can also “undo” the derivatives for exponential, logarithmic functions, or trigonometric functions.

$$\boxed{\int e^xdx = e^x + C}$$

$$\boxed{\int \frac{1}{x}dx = \ln(x) + C}$$

$$\boxed{\int \sin(x)dx = -\cos(x) + C}$$

$$\boxed{\int \cos(x)dx = \sin(x) + C}$$

On to the examples. Recall that $$x^{-m} = \frac{1}{x^m}$$ and .

##### Power rule with fractional and negative powers
• Find .

Negative and fractional powers work the same way as the positive powers we’ve been working with. We see At this point, let’s just type it into a calculator to get an approximate answer. We see that the integral is about $$\boxed{23.36}$$.

• Find $$\int_1^2 \frac{1}{x^4}dx$$.

This problem becomes an inverse power rule problem if we notice that $$\frac{1}{x^4} = x^{-4}$$. We see

\begin{align*} \int_1^2 \frac{1}{x^4}dx & = \int_1^2 x^{-4}dx \\ & = \frac{x^{-5}}{-5} \Big|_1^2 \\ & = -\frac{1}{5x^5} \Big|_1^2 \\ & = \left( -\frac{1}{5(2)^5} \right) - \left( -\frac{1}{5(1)^5} \right) \\ & = -\frac{1}{160} + \frac{1}{5} \\ & = -\frac{1}{160} + \frac{32}{160} \\ & = \boxed{\frac{31}{160}}. \end{align*}

• Find $$\int_{25}^{100} \sqrt{x}dx$$.

If we remember that , this is a power rule problem. Now for logarithmic and exponential functions.

##### Logarithmic and Exponential functions and integration
• Find $$\int_1^5 \frac{2}{x}dx$$.

For this problem, you may be tempted to write this as $$2x^{-1}$$ and use the inverse power rule. Good instincts, but in this case it won’t work (try it: it leads to division by zero!). So instead, let’s invert the natural logarithm derivative.

*** QuickLaTeX cannot compile formula:
\begin{align*}
\int_1^5 \frac{2}{x}dx & = 2 \int_1^5 \frac{1}{x}dx \\
& = 2 \left( \ln(x) \right) \Big|_1^5 \\
& = (2 \ln(5)) - (2 \ln(1)) \\
& = 2 \ln(5) - 0 \\
& = 2 \ln(5) \approx \boxed{3.2}.
\end{align*}

*** Error message:
Error: get_image_size(): -1

• Find $$\int_{-2}^2 7 e^{x}dx$$.

$$e^x$$ is the best function for calculus. Doesn’t change with integration!

\begin{align*} \int_{-2}^2 7 e^xdx & = 7 \int_{-2}^2 e^xdx \\ & = 7 (e^x) \Big|_{-2}^2 \\ & = (7 e^{2}) - (7 e^{-2}) \end{align*}

Not a lot to do to simplify this, but we can get a decimal approximation: $$\approx \boxed{50.78}$$.

This page titled 7.1: Power, exponential, trig, and logarithm rules is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tyler Seacrest via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.