Skip to main content
$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 6.4: Onto Functions

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

One-to-one functions focus on the elements in the domain. We do not want any two of them sharing a common image. Onto functions focus on the codomain. We want to know if it contains elements not associated with any element in the domain.

Definition: surjection

A function $$f :{A}\to{B}$$ is onto if, for every element $$b\in B$$, there exists an element $$a\in A$$ such that $f(a) = b.$ An onto function is also called a surjection, and we say it is surjective.

Example $$\PageIndex{1}\label{eg:ontofcn-01}$$

The graph of the piecewise-defined functions $$h :{[1,3]}\to{[2,5]}$$ defined by

$h(x) = \cases{ 3x- 1 & if 1\leq x\leq 2, \cr -3x+11 & if 2 < x\leq 3, \cr} \nonumber$

is displayed on the left in Figure [fig:ontograph]. It is clearly onto, because, given any $$y\in[2,5]$$, we can find at least one $$x\in[1,3]$$ such that $$h(x)=y$$. Likewise, the function $$k :{[1,3]}\to{[2,5]}$$ defined by

$k(x) = \cases{ 3x- 1 & if 1\leq x\leq 2, \cr 5 & if 2 < x\leq 3, \cr}\nonumber$

is also onto. Its graph is displayed on the right of Figure [fig:ontograph].

exercise $$\PageIndex{1}\label{he:ontofcn-01}$$

The two functions in Example 6.4.1 are onto but not one-to-one. Construct a one-to-one and onto function $$f$$ from $$[1,3]$$ to $$[2,5]$$.

exercise $$\PageIndex{2}\label{he:ontofcn-02}$$

Construct a function $$g :{[1,3]}\to{[2,5]}$$ that is one-to-one but not onto.

exercise $$\PageIndex{3}\label{he:ontofcn-03}$$

Find a subset $$B$$ of $$\mathbb{R}$$ that would make the function $$s :{\mathbb{R}}\to{B}$$ defined by $$s(x) = x^2$$ an onto function.

Example $$\PageIndex{2}\label{eg:ontofcn-02}$$

Construct a function $$g :{(5,8)}\to{\mathbb{R}}$$ that is both one-to-one and onto

Remark

This is a challenging problem. Since the domain is an open interval, a straight line graph does not work, because it will not cover every number in the codomain.

Solution

The solution is based on the observation that the function $$h :{(-\frac{\pi}\to{2},\frac{\pi}{2})}{\mathbb{R}}$$ defined by $$h(x)=\tan x$$ is one-to-one and onto. For this to work in this problem, we need to shift and scale the interval $$(5,8)$$ to the same size as $$(-\frac{\pi}{2},\frac{\pi}{2})$$.

First, we have to shift the center of the interval $$(5,8)$$ to the center of the interval $$(-\frac{\pi}{2},\frac{\pi}{2})$$. The midpoint of the interval $$(5,8)$$ is $$\frac{5+8}{2}=\frac{13}{2}$$, and the midpoint of $$(-\frac{\pi}{2},\frac{\pi}{2})$$ is 0. Hence, we need to shift the interval $$(5,8)$$ to the left $$\frac{13}{2}$$ units. This means we need to use the transformation $$x-\frac{13}{2}$$. The two endpoints 5 and 8 become $$-\frac{3}{2}$$ and $$\frac{3}{2}$$, respectively:

$\arraygap{1.25} \begin{array}{|c||c|c|c|} \hline x & 5 & \frac{13}{2} & 8 \\ \hline x-\frac{13}{2} &-\frac{3}{2} & 0 & \frac{3}{2} \\ [1pt] \hline \end{array}\nonumber$

After the transformation $$x-\frac{13}{2}$$, the original interval $$(5,8)$$ becomes the interval $$(-\frac{3}{2},\frac{3}{2})$$. Next, we want to stretch the interval $$(-\frac{3}{2},\frac{3}{2})$$ into $$(-\frac{\pi}{2},\frac{\pi}{2})$$. This calls for a scaling factor of $$\frac{\pi}{3}$$.

$\arraygap{1.25} \begin{array}{|c||c|c|c|} \hline x & 5 & \frac{13}{2}& 8 \\ \hline \frac{\pi}{3}\left(x-\frac{13}{2}\right) &-\frac{\pi}{2}& 0 &\frac{\pi}{2}\\ [1pt] \hline \end{array}\nonumber$

Putting these transformations together, we conclude that $g(x) = \tan\left[\frac{\pi}{3}\left(x-\frac{13}{2}\right)\right]$ gives a one-to-one and onto function from $$(5,8)$$ to $$\mathbb{R}$$.

exercise $$\PageIndex{4}\label{he:ontofcn-04}$$

Construct a function $$h :{(2,9)}\to{\mathbb{R}}$$ that is both one-to-one and onto.

In general, how can we tell if a function $$f :{A}\to{B}$$ is onto? The key question is: given an element $$y$$ in the codomain, is it the image of some element $$x$$ in the domain? If it is, we must be able to find an element $$x$$ in the domain such that $$f(x)=y$$. Mathematically, if the rule of assignment is in the form of a computation, then we need to solve the equation $$y=f(x)$$ for $$x$$. If we can always express $$x$$ in terms of $$y$$, and if the resulting $$x$$-value is in the domain, the function is onto.

Example $$\PageIndex{3}\label{eg:ontofcn-03}$$

Is the function $$p :{\mathbb{R}}\to{\mathbb{R}}$$ defined by $$p(x)=3x^2-4x+5$$ onto?

Solution

Let $$y=3x^2-4x+5$$, we want to know if we can always express $$x$$ in terms of $$y$$. Rearranging the equation, we find $3x^2-4x+(5-y) = 0.$ We want this equation to be solvable over $$\mathbb{R}$$, that is, we want its solutions to be real. This requires its discriminant to be nonnegative. So we need

$(-4)^2-4\cdot3\cdot(5-y) = 12y-44 \geq 0. \nonumber$

We have real solutions only when $$y\geq\frac{11}{3}$$. This means, when $$y<\frac{11}{3}$$, we cannot find an $$x$$-value such that $$p(x)=y$$. Therefore, $$p$$ is not onto.

Solution

By completing the square, we find

$p(x) = 3x^2-4x+5 = 3\left(x-\frac{2}{3}\right)^2 + \frac{11}{3} \geq \frac{11}{3}. \nonumber$

Since $$p(x)\not<\frac{11}{3}$$, it is clear that $$p$$ is not onto.

exercise $$\PageIndex{5}\label{he:ontofcn-05}$$

The function $$g :{\mathbb{R}}\to{\mathbb{R}}$$ is defined as $$g(x)=3x+11$$. Prove that it is onto.

Example $$\PageIndex{4}\label{eg:ontofcn-04}$$

Is the function $$p :{\mathbb{R}}\to{\mathbb{R}}$$ defined by

$p(x) = \cases{ 4x+1 & if x\leq3 \cr \textstyle\frac{1}{2} \,x & if x>3 \cr} \nonumber$

an onto function?

Answer

The graphs $$y=4x+1$$ and $$y=\frac{1}{2}\,x$$ are both increasing. For $$x\leq3$$, the $$y$$-values cover the range $$(-\infty,13)$$, and for $$x>3$$, the $$y$$-values cover the range $$\big(\frac{3}{2},\infty\big)$$. Since these two $$y$$-ranges overlap, all the $$y$$-values are being covered by the images. Therefore, $$p$$ is onto.

exercise $$\PageIndex{6}\label{he:ontofcn-06}$$

Determine whether $f(x) = \cases{ 3x+1 & if x\leq2 \cr 4x & if x > 2 \cr}\nonumber$ is an onto function.

Example $$\PageIndex{5}\label{eg:ontofcn-05}$$

Consider the function $$g :{\mathbb{Z}_{43}}\to{\mathbb{Z}_{43}}$$ defined by

$g(x) \equiv 11x-5 \pmod{43}.\nonumber$

Let $y = g(x) \equiv 11x-5 \pmod{43},\nonumber$

then $x \equiv 11^{-1}(y+5) \equiv 4(y+5) \pmod{43}.\nonumber$

This shows that $$g$$ is onto.

exercise $$\PageIndex{7}\label{he:ontofcn-07}$$

Show that the function $$h :{\mathbb{Z}_{23}}\to{\mathbb{Z}_{23}}$$ defined by $$h(x) \equiv 5x+8$$ (mod 23) is onto.

Example $$\PageIndex{6}\label{eg:ontofcn-06}$$

Is the function $${u}:{\mathbb{Z}}\to{\mathbb{Z}}$$ defined by

$u(n) = \cases{ 2n & if n\geq0 \cr -n & if n < 0 \cr} \nonumber$

one-to-one? Is it onto?

Solution

Since $$u(-2)=u(1)=2$$, the function $$u$$ is not one-to-one. Since $$u(n)\geq0$$ for any $$n\in\mathbb{Z}$$, the function $$u$$ is not onto.

exercise $$\PageIndex{8}\label{he:ontofcn-08}$$

Is the function $$v:{\mathbb{N}}\to{\mathbb{N}}$$ defined by $$v(n)=n+1$$ onto? Explain.

Example $$\PageIndex{7}\label{eg:oneonefcn-07}$$

The function $$s$$ in Example 6.4.10 is both one-to-one and onto. It provides a one-to-one correspondence between the elements of $$A$$ by matching a married individual to his/her spouse.

exercise $$\PageIndex{9}\label{he:ontofcn-09}$$

Is the function $$h_1$$ in Exercises 1.2, Problem 6.4.8, an onto function? Explain.

## Summary and Review

• A function $$f :{A}\to{B}$$ is onto if, for every element $$b\in B$$, there exists an element $$a\in A$$ such that $$f(a)=b$$.
• To show that $$f$$ is an onto function, set $$y=f(x)$$, and solve for $$x$$, or show that we can always express $$x$$ in terms of $$y$$ for any $$y\in B$$.
• To show that a function is not onto, all we need is to find an element $$y\in B$$, and show that no $$x$$-value from $$A$$ would satisfy $$f(x)=y$$.

exercise $$\PageIndex{1}\label{ex:ontofcn-01}$$

Which of the following functions are onto? Explain!

1. $$f :{\mathbb{R}}\to{\mathbb{R}}$$, $$f(x)=x^3-2x^2+1$$.
2. $$g :{[\,2,\infty)}\to{\mathbb{R}}$$, $$g(x)=x^3-2x^2+1$$.

exercise $$\PageIndex{2}\label{ex:ontofcn-02}$$

Which of the following functions are onto? Explain!

1. $$p :{\mathbb{R}}\to{\mathbb{R}}$$, $$p(x)=e^{1-2x}$$.
2. $$q :{\mathbb{R}}\to{\mathbb{R}}$$, $$q(x)=|1-3x|$$.

exercise $$\PageIndex{3}\label{ex:ontofcn-03}$$

Construct a one-to-one function $$f :{[1,3]}\to{[2,5]}$$ that is not onto.

exercise $$\PageIndex{4}\label{ex:ontofcn-04}$$

Construct an onto function $$g :{[\,2,5)}\to{(1,4\,]}$$ that is not one-to-one.

exercise $$\PageIndex{5}\label{ex:ontofcn-05}$$

Determine which of the following are onto functions.

1. $$f :{\mathbb{Z}}\to{\mathbb{Z}}$$; $$f(n)=n^3+1$$
2. $$g :{\mathbb{Q}}\to{\mathbb{Q}}$$; $$g(x)=n^2$$
3. $$h :{\mathbb{R}}\to{\mathbb{R}}$$; $$h(x)=x^3-x$$
4. $$k :{\mathbb{R}}\to{\mathbb{R}}$$; $$k(x)=5^x$$

exercise $$\PageIndex{6}\label{ex:ontofcn-06}$$

Determine which of the following are onto functions.

1. $$p :{\wp(\{1,2,3,\ldots,n\})}\to{\{0,1,2,\ldots,n\}}$$; $$p(S)=|S|$$
2. $$q :{\wp(\{1,2,3,\ldots,n\})}\to{\wp(\{1,2,3,\ldots,n\})}$$; $$q(S)=\overline{S}$$

exercise $$\PageIndex{7}\label{ex:ontofcn-07}$$

Determine which of the following functions are onto.

1. $$\{f_1}:{\{1,2,3,4,5\}}\to{\{a,b,c,d\}}$$; $$f_1(1)=b$$, $$f_1(2)=c$$, $$f_1(3)=a$$, $$f_1(4)=a$$, $$f_1(5)=c$$
2. $${f_2}:{\{1,2,3,4\}}\to{\{a,b,c,d,e\}}$$; $$f_2(1)=c$$, $$f_2(2)=b$$, $$f_2(3)=a$$, $$f_2(4)=d$$
3. $${f_3}:{\mathbb{Z}}\to{\mathbb{Z}}$$; $$f_5(n)=-n$$
4. $${f_4}:{\mathbb{Z}}\to{\mathbb{Z}}$$; $$f_4(n) = \cases{\hfill 2n & if$$n < 0$$\cr \hfill -3n & if$$n0$$\cr}$$

exercise $$\PageIndex{8}\label{ex:ontofcn-08}$$

Determine which of the following functions are onto.

1. $${g_1}:{\{1,2,3,4,5\}}\to{\{a,b,c,d,e\}}$$; $$g_1(1)=b$$, $$g_1(2)=b$$, $$g_1(3)=b$$, $$g_1(4)=a$$, $$g_1(5)=d$$
2. $${g_2}:{\{1,2,3,4,5\}}\to{\{a,b,c,d,e\}}$$; $$g_2(1)=d$$, $$g_2(2)=b$$, $$g_2(3)=e$$, $$g_2(4)=a$$, $$g_2(5)=c$$
3. $${g_3}:{\mathbb{N}}\to{\mathbb{N}}$$; $$g_3(n) = \cases{(n+1)/2 & if$$n$$is odd \cr n/2 & if$$n$$is even \cr}$$
4. $${g_4}:{\mathbb{N}}\to{\mathbb{N}}$$; $$g_4(n) = \cases{n+1 & if$$n$$is odd \cr n-1 & if$$n$$is even \cr}$$

exercise $$\PageIndex{9}\label{ex:ontofcn-09}$$

Is it possible for a function from $$\{1,2\}$$ to $$\{a,b,c,d\}$$ to be onto? Explain.

exercise $$\PageIndex{10}\label{ex:ontofcn-10}$$

List all the onto functions from $$\{1,2,3,4\}$$ to $$\{a,b\}$$?

Hint

List the images of each function.

exercise $$\PageIndex{11}\label{ex:ontofcn-11}$$

Determine which of the following functions are onto.

1. $$f :{\mathbb{Z}_{10}}\to{\mathbb{Z}_{10}}$$; $$h(n)\equiv 3n$$ (mod 10).
2. $$g :{\mathbb{Z}_{10}}\to{\mathbb{Z}_{10}}$$; $$g(n)\equiv 5n$$ (mod 10).
3. $$h :{\mathbb{Z}_{36}}\to{\mathbb{Z}_{36}}$$; $$h(n)\equiv 3n$$ (mod 36).

exercise $$\PageIndex{12}\label{ex:ontofcn-12}$$

Determine which of the following functions are onto.

1. $$r:{\mathbb{Z}_{36}}\to{\mathbb{Z}_{36}}$$; $$r(n)\equiv 5n$$ (mod 36).
2. $$s :{\mathbb{Z}_{10}}\to{\mathbb{Z}_{10}}$$; $$s(n)\equiv n+5$$ (mod 10).
3. $$t :{\mathbb{Z}_{10}}\to{\mathbb{Z}_{10}}$$; $$t(n)\equiv 3n+5$$ (mod 10).

exercise $$\PageIndex{13}\label{ex:ontofcn-13}$$

Determine which of the following functions are onto.

1. $${\alpha}:{\mathbb{Z}_{12}}\to{\mathbb{Z}_{ 7}}$$; $$\alpha(n)\equiv 2n$$ (mod 7).
2. $${\beta} :{\mathbb{Z}_{ 8}}\to{\mathbb{Z}_{12}}$$; $$\beta (n)\equiv 3n$$ (mod 12).
3. $${\gamma}:{\mathbb{Z}_{ 6}}\to{\mathbb{Z}_{12}}$$; $$\gamma(n)\equiv 2n$$ (mod 12).
4. $${\delta}:{\mathbb{Z}_{12}}\to{\mathbb{Z}_{36}}$$; $$\delta(n)\equiv 6n$$ (mod 36).

exercise $$\PageIndex{14}\label{ex:ontofcn-14}$$

Give an example of a function $$f :{\mathbb{N}}{\mathbb{N}}$$ that is

1. neither one-to-one nor onto
2. one-to-one but not onto
3. onto but not one-to-one
4. both one-to-one and onto