Skip to main content
Mathematics LibreTexts

7.2: The Generalized Binomial Theorem

  • Page ID
    60105
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We are going to present a generalised version of the special case of Theorem 3.3.1, the Binomial Theorem, in which the exponent is allowed to be negative. Recall that the Binomial Theorem states that

    \[(1+x)^n = \sum_{r=0}^{n} \binom{n}{r} x^r \]

    If we have \(f(x)\) as in Example 7.1.2(4), we’ve seen that

    \[f(x) = \dfrac{1}{(1 − x)} = (1 − x)^{−1}\]

    So if we were allowed negative exponents in the Binomial Theorem, then a change of variable \(y = −x\) would allow us to calculate the coefficient of \(x^n\) in \(f(x)\).

    Of course, if \(n\) is negative in the Binomial Theorem, we can’t figure out anything unless we have a definition for what \(\binom{n}{r}\) means under these circumstances.

    Definition: Generalised Binomial Coefficient

    \[\binom{n}{r} = \dfrac{n(n-1)...(n-r+1)}{r!} \]

    where \(r ≥ 0\) but \(n\) can be any real number.

    Notice that this coincides with the usual definition for the binomial coefficient when \(n\) is a positive integer, since

    \[\dfrac{n!}{(n − r)!} = n(n − 1). . .(n − r + 1)\]

    in this case.

    Example \(\PageIndex{1}\)

    \(\binom{−2}{5} = \dfrac{(-2)(-3)(-4)(-5)(-6)}{5!} = -6 \)

    If n is a positive integer, then we can come up with a nice formula for \(\binom{−n}{r}\).

    Proposition \(\PageIndex{1}\)

    If \(n\) is a positive integer, the

    \[\binom{−n}{r} = (-1)^r \binom{n+r-1}{r} \]

    Proof

    We have

    \(\binom{−n}{r} = \dfrac{-n(-n-1)...(-n-r+1)}{r!}\).

    Taking a factor of (\(−1\)) out of each term on the right-hand side give

    \((−1)^rn(n + 1). . . \dfrac{(n + r − 1)}{(r!)}\).

    Now,

    \((n + r − 1)(n + r − 2). . . n = \dfrac{(n + r − 1)!}{(n − 1)!}\)

    so

    \((-1)^r \dfrac{n(n+1)...(n+r-1)}{r!} = (-1)^r \dfrac{(n+r-1)!}{r!(n-1)!} = (-1)^r \binom{n+r-1}{r} \),

    as claimed.

    With this definition, the binomial theorem generalises just as we would wish. We won’t prove this.

    Theorem \(\PageIndex{1}\): Generalised Binomial Theorem

    For any \(n ∈ R\),

    \[(1+x)^n = \sum_{r=0}^{\infty} \binom{n}{r}x^r \]

    Example \(\PageIndex{2}\)

    Let’s check that this gives us the correct values for the coefficients of \(f(x)\) in Example 7.1.2 (4), which we already know.

    Solution

    We have

    \(f(x) = (1 − x)^{−1} = (1 + y)^{−1}\)

    where \(y = −x\). The Generalised Binomial Theorem tells us that the coefficient of \(y^r\) will be

    \(\binom{-1}{r} = (-1)^r \binom{1+r-1}{r} = (-1)^r \)

    since \(\binom{r}{r} = 1\). But we want the coefficient of \(x^r\), not of \(y^r\), and

    \(y^r = (−x)^r = (−1)^r x^r = x^r\)

    so we have

    \((−1)^r y^r = (−1)^{2r}x^r = 1^rx^r = x^r\)

    Thus, the coefficient of \(x^r\) in \(f(x)\) is \(1\). This is, indeed, precisely the sequence we started with in Example 7.1.2 (4).

    Example \(\PageIndex{3}\)

    Let’s work out \((1 + x)^{−3}\).

    Solution

    We need to know what \(\binom{−3}{r}\) gives, for various values of \(r\). By Proposition 7.2.1, we have

    \( \binom{-3}{r} = (-1)^r \binom{3+r-1}{r} = (-1)^r \binom{r+2}{r} = (-1)^r \dfrac{(r+2)(r+1)}{2} \)

    When \(r = 0\), this is \((−1)^02 · \dfrac{1}{2} = 1\). When \(r = 1\), this is \((−1)^13 · \dfrac{2}{2} = −3\). When \(r = 2\), this is \((−1)^24 · \dfrac{3}{2} = 6\). In general, we see that

    \( (1 + x)^{−3} = 0 − 3x + 6x^2 − + . . . + (−1)^n \dfrac{(n+2)(n+1)}{2}x^n + ... \)

    Exercise \(\PageIndex{1}\)

    Calculate the following.

    1. \(\binom{−5}{7}\)
    2. The coefficient of \(x^4\) in \((1 − x)^{−2}\).
    3. The coefficient of \(x^n\) in \((1 + x)^{−4}\).
    4. The coefficient of \(x^{k−1}\) in \[\dfrac{1 + x}{(1 − 2x)^5} \nonumber \] Hint: Notice that \(\dfrac{1 + x}{(1 − 2x)^5} = (1 − 2x)^{−5} + x(1 − 2x)^{−5}\). Work out the coefficient of \(x^n\) in \((1 − 2x)^{−5}\) and in \(x(1 − 2x)^{−5}\), substitute \(n = k − 1\), and add the two coefficients.
    5. The coefficient of \(x^k\) in \(\dfrac{1}{(1 − x^j)^n}\), where \(j\) and \(n\) are fixed positive integers. Hint: Think about what conditions will make this coefficient zero.

    This page titled 7.2: The Generalized Binomial Theorem is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Joy Morris.