1.13: The Functions σ and τ
- Page ID
- 82295
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Definition \(\PageIndex{1}\)
For \(n>0\) define: \[\begin{aligned} \tau(n) &=\text{the number of positive divisors of }n, \\ \sigma(n) &=\text{the sum of the positive divisors of }n.\end{aligned}\]
Example \(\PageIndex{1}\)
\(12=3\cdot 2^2\) has positive divisors \[1,2,3,4,6,12.\nonumber\] Hence \[\tau(12)=6\nonumber\] and \[\sigma(12)=1+2+3+4+6+12=28.\nonumber\]
Definition \(\PageIndex{2}\): Proper Divisor
A positive divisor \(d\) of \(n\) is said to be a proper divisor of \(n\) if \(d<n\). We denote the sum of all proper divisors of \(n\) by \(\sigma^\ast(n)\).
Note that if \(n\ge 2\) then \[\sigma^\ast(n)=\sigma(n)-n.\nonumber\]
Example \(\PageIndex{2}\)
\(\sigma^\ast(12)=16\).
Definition \(\PageIndex{3}\): Perfect
\(n>1\) is perfect if \(\sigma^\ast(n)=n\).
Example \(\PageIndex{3}\)
The proper divisors of \(6\) are \(1\), \(2\) and \(3\). So \(\sigma^\ast(6)=6\). Therefore \(6\) is perfect.
Exercise \(\PageIndex{1}\)
Prove that \(28\) is perfect.
The next theorem shows a simple way to compute \(\sigma(n)\) and \(\tau(n)\) from the prime factorization of \(n\).
Let \[n=p_1^{e_1}p_2^{e_2}\dotsm p_r^{e_r},\quad r\ge 1,\nonumber\] where \(p_1<p_2<\dotsb<p_r\) are primes and \(e_i\ge 0\) for each \(i\in\{1,2,\dotsc,r\}\). Then
- \(\tau(n)=(e_1+1)(e_2+1)\dotsm(e_r+1)\)
- \(\sigma(n)=\left(\dfrac{p_1^{e_1+1}-1}{p_1-1}\right)\left(\dfrac{p_2^{e_2+1}-1}{p_2-1}\right)\dotsm \left(\dfrac{p_r^{e_r+1}-1}{p_r-1}\right)\).
- Proof
-
Proof of (1) From the Fundamental Theorem of Arithmetic every positive factor \(d\) of \(n\) will have its prime factors coming from those of \(n\). Hence \(d\mid n\) iff \(d=p_1^{f_1}p_2^{f_2}\dotsm p_r^{f_r}\) where for each \(i\): \[0\le f_i\le e_i.\nonumber\] That is, for each \(f_i\) we can choose a value in the set of \(e_i+1\) numbers \(\{0,1,2,\dotsc,e_i\}\). So, in all, there are \((e_1+1)(e_2+1)\dotsm(e_r+1)\) choices for the exponents \(f_1,f_2,\dotsc,f_r\). So (1) holds.
Proof of (2) We first establish two lemmas, Lemma \(\PageIndex{1}\) and Lemma \(\PageIndex{2}\).
Let \(n=p_1^{e_1}p_2^{e_2}\dotsm p_r^{e_r}\). Our proof is by induction on \(r\). If \(r=1\), \(n=p_1^{e_1}\) and the result follows from Lemma \(\PageIndex{2}\). Suppose the result is true when \(1\le r\le k\). Consider now the case \(r=k+1\). That is, let \[n=p_1^{e_1}\dotsm p_k^{e_k}p_{k+1}^{e_{k+1}}\nonumber\] where the primes \(p_1,\dotsc,p_k,p_{k+1}\) are distinct and \(e_i\ge 0\). Let \(a=p_1^{e_1}\dotsm p_k^{e_k}\), \(b=p_{k+1}^{e_{k+1}}\). Clearly \(\gcd(a,b)=1\). So by Lemma \(\PageIndex{1}\) we have \(\sigma(n)=\sigma(a)\sigma(b)\). By the induction hypothesis \[\sigma(a)=\left(\frac{p_1^{e_1+1}-1}{p_1-1}\right)\dotsm\left(\frac{p_k^{e_k+1}-1}{p_k-1}\right)\nonumber\] and by Lemma \(\PageIndex{2}\) \[\sigma(b)=\frac{p_{k+1}^{e_{k+1}+1}-1}{p_{k+1}-1}\nonumber\] and it follows that \[\sigma(n)=\left(\frac{p_1^{e_1+1}-1}{p_1-1}\right)\dotsm\left(\frac{p_{k+1}^{e_{k+1}+1}-1}{p_{k+1}-1}\right).\nonumber\] So the result holds for \(r=k+1\). By PMI it holds for \(r\ge 1\).
Before proving this let’s look at an example. Take \(n=72=8\cdot 9=2^3\cdot 3^2\). The theorem says \[\begin{aligned} \tau(72) &=(3+1)(2+1)=12 \\ \sigma(72) &=\left(\frac{2^4-1}{2-1}\right)\left(\frac{3^3-1}{3-1}\right)=15\cdot 13=195.\end{aligned}\]
Let \(n=ab\) where \(a>0\), \(b>0\) and \(\gcd(a,b)=1\). Then \(\sigma(n)=\sigma(a)\sigma(b)\).
- Proof
-
Since \(a\) and \(b\) have only \(1\) as a common factor, using the Fundamental Theorem of Arithmetic it is easy to see that \(d\mid ab\Leftrightarrow d=d_1d_2\) where \(d_1\mid a\) and \(d_2\mid b\). That is, the divisors of \(ab\) are products of the divisors of \(a\) and the divisors of \(b\). Let \[1,a_1,\dotsc,a_s\nonumber\] denote the divisors of \(a\) and let \[1,b_1,\dotsc,b_t\nonumber \] denote the divisors of \(b\). Then \[\begin{aligned} \sigma(a) &=1+a_1+a_2+\dots b+a_s, \\ \sigma(b) &=1+b_1+b_2+\dots b+b_t.\end{aligned}\] The divisors of \(n=ab\) can be listed as follows \[\begin{gathered} 1,b_1,b_2,\dots c,b_t, \\ a_1\cdot 1, a_1\cdot b_1, a_1\cdot b_2,\dots c, a_1\cdot b_t, \\ a_2\cdot 1, a_2\cdot b_1, a_2\cdot b_2,\dots c, a_2\cdot b_t, \\ \vdots \\ a_s\cdot 1, a_s\cdot b_1, a_s\cdot b_2,\dots c, a_s\cdot b_t.\end{gathered}\] It is important to note that since \(gcd(a,b)=1\), \(a_ib_j = a_kb_\ell\) implies that \(a_i=a_k\) and \(b_j=b_\ell\). That is there are no repetitions in the above array.
If we sum each row we get \[\begin{gathered} 1+b_1+\dots b+b_t=\sigma(b) \\ a_11+a_1b_1+\dots b+a_1b_t=a_1\sigma(b) \\ \vdots \\ a_s\cdot 1+a_sb_1+\dots b+a_sb_t=a_s\sigma(b).\end{gathered}\] By adding these partial sums together we get \[\begin{split} \sigma(n) &=\sigma(b)+a_1\sigma(b)+a_2\sigma(b)+\dots b+a_3\sigma(b) \\ &=(1+a_1+a_2+\dots b+a_s)\sigma(b) \\ &=\sigma(a)\sigma(b). \end{split}\] This proves the lemma.
If \(p\) is a prime and \(k\ge 0\) we have \[\sigma(p^k)=\frac{p^{k+1}-1}{p-1}.\nonumber\]
- Proof
-
Since \(p\) is prime, the divisors of \(p^k\) are \(1,p,p^2,\dotsc,p^k\). Hence \[\sigma(p^k)=1+p+p^2+\dotsb+p^k=\frac{p^{k+1}-1}{p-1},\nonumber\] as desired.
Find \(\sigma(n)\) and \(\tau(n)\) for the following values of \(n\).
- \(n=900\)
- \(n=496\)
- \(n=32\)
- \(n=128\)
- \(n=1024\)
Exercise \(\PageIndex{3}\)
Determine which (if any) of the numbers in Exercise \(\PageIndex{2}\) are perfect.
Exercise \(\PageIndex{4}\)
Does Lemma \(\PageIndex{1}\) hold if we replace \(\sigma\) by \(\sigma^\ast\)?
- Answer
-
The answer is no, but find explicit numbers \(a\) and \(b\) such that the result fails yet \(\gcd(a,b)=1\).