Skip to main content
Mathematics LibreTexts

3.4: The Chinese Remainder Theorem

  • Page ID
    8834
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In this section, we discuss the solution of a system of congruences having different moduli. An example of this kind of systems is the following; find a number that leaves a remainder of 1 when divided by 2, a remainder of 2 when divided by three and a remainder of 3 when divided by 5. This kind of question can be translated into the language of congruences. As a result, in this chapter, we present a systematic way of solving this system of congruences.

    The system of congruences

    \[\begin{aligned} && x\equiv b_1(mod \ n_1),\\&&x\equiv b_2(mod \ n_2),\\&&.\\&&.\\&&.\\&& x\equiv b_t(mod \ n_t),\end{aligned}\]

    has a unique solution modulo \(N=n_1n_2...n_t\) if \(n_1,n_2,...,n_t\) are pairwise relatively prime positive integers.

    Let \(N_k=N/n_k\). Since \((n_i,n_j)=1\) for all \(i\neq j\), then \((N_k,n_k)=1\). Hence by Theorem 26 , we can find an inverse \(y_k\) of \(N_k\) modulo \(n_k\) such that \(N_ky_k\equiv 1(mod \ n_k)\). Consider now

    \[x=\sum_{i=1}^tb_iN_iy_i\]

    Since \[N_j\equiv 0(mod \ n_k) \ \ \mbox{for all} \ \ j\neq k,\] thus we see that \[x\equiv b_kN_ky_k(mod \ n_k).\] Also notice that \(N_ky_k\equiv 1(mod \ n_k)\). Hence \(x\) is a solution to the system of t congruences. We have to show now that any two solutions are congruent modulo \(N\). Suppose now that you have two solutions \(x_0,x_1\) to the system of congruences. Then \[x_0\equiv x_1(mod \ n_k)\] for all \(1\leq k\leq t\). Thus by Theorem 23, we see that \[x_0\equiv x_1(mod \ N).\] Thus the solution of the system is unique modulo \(N\).

    We now present an example that will show how the Chinese remainder theorem is used to determine the solution of a given system of congruences.

    Example \(\PageIndex{1}\):

    Solve the system \[\begin{aligned} && x\equiv 1(mod \ 2)\\&& x\equiv 2(mod \ 3)\\&& x\equiv 3(mod \ 5).\end{aligned}\] We have \(N=2.3.5=30\). Also \[N_1=30/2=15, N_2=30/3=10 \mbox{and} \ \ N_3=30/5=6.\] So we have to solve now \(15y_1\equiv 1(mod \ 2)\). Thus \[y_1\equiv 1(mod \ 2).\] In the same way, we find that \[y_2\equiv 1(mod \ 3) \mbox{and} \ \ y_3\equiv 1(mod \ 5).\] As a result, we get \[x\equiv 1.15.1+2.10.1+3.6.1\equiv 53\equiv 23 (mod \ 30).\]

    Exercises

    1. Find an integer that leaves a remainder of 2 when divided by either 3 or 5, but that is divisible by 4.
    2. Find all integers that leave a remainder of 4 when divided by 11 and leaves a remainder of 3 when divided by 17.
    3. Find all integers that leave a remainder of 1 when divided by 2, a remainder of 2 when divided by 3 and a remainder of 3 when divided by 5.

    Contributors and Attributions

    • Dr. Wissam Raji, Ph.D., of the American University in Beirut. His work was selected by the Saylor Foundation’s Open Textbook Challenge for public release under a Creative Commons Attribution (CC BY) license.


    This page titled 3.4: The Chinese Remainder Theorem is shared under a CC BY license and was authored, remixed, and/or curated by Wissam Raji.

    • Was this article helpful?