Skip to main content
Mathematics LibreTexts

5.6E: Reduction of Order (Exercises)

  • Page ID
    18320
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Q5.6.1

    In Exercises 5.6.1-5.6.17 find the general solution, given that \(y_1\) satisfies the complementary equation. As a byproduct, find a fundamental set of solutions of the complementary equation.

    1. \((2x+1)y''-2y'-(2x+3)y=(2x+1)^2; \quad y_1=e^{-x}\)

    2. \(x^2y''+xy'-y={4\over x^2}; \quad y_1=x\)

    3. \(x^2y''-xy'+y=x; \quad y_1=x\)

    4. \(y''-3y'+2y={1\over1+e^{-x}}; \quad y_1=e^{2x}\)

    5. \(y''-2y'+y=7x^{3/2}e^x; \quad y_1=e^x\)

    6. \(4x^2y''+(4x-8x^2)y'+(4x^2-4x-1)y=4x^{1/2}e^x(1+4x); \quad y_1=x^{1/2}e^x\)

    7. \(y''-2y'+2y=e^x\sec x; \quad y_1=e^x\cos x\)

    8. \(y''+4xy'+(4x^2+2)y=8e^{-x(x+2)}; \quad y_1=e^{-x^2}\)

    9. \(x^2y''+xy'-4y=-6x-4; \quad y_1=x^2\)

    10. \(x^2y''+2x(x-1)y'+(x^2-2x+2)y=x^3e^{2x}; \quad y_1=xe^{-x}\)

    11. \(x^2y''-x(2x-1)y'+(x^2-x-1)y=x^2e^x; \quad y_1=xe^x\)

    12. \((1-2x)y''+2y'+(2x-3)y=(1-4x+4x^2)e^x; \quad y_1=e^x\)

    13. \(x^2y''-3xy'+4y=4x^4; \quad y_1=x^2\)

    14. \(2xy''+(4x+1)y'+(2x+1)y=3x^{1/2}e^{-x}; \quad y_1=e^{-x}\)

    15. \(xy''-(2x+1)y'+(x+1)y=-e^x; \quad y_1=e^x\)

    16. \(4x^2y''-4x(x+1)y'+(2x+3)y=4x^{5/2}e^{2x}; \quad y_1=x^{1/2}\)

    17. \(x^2y''-5xy'+8y=4x^2; \quad y_1=x^2\)

    Q5.6.2

    In Exercises 5.6.18-5.6.30 find a fundamental set of solutions, given that \(y_{1}\) is a solution.

    18. \(xy''+(2-2x)y'+(x-2)y=0; \quad y_1=e^x\)

    19. \(x^2y''-4xy'+6y=0; \quad y_1=x^2\)

    20. \(x^2(\ln |x|)^2y''-(2x \ln |x|)y'+(2+\ln |x|)y=0; \quad y_1=\ln |x|\)

    21. \(4xy''+2y'+y=0; \quad y_1=\sin \sqrt{x}\)

    22. \(xy''-(2x+2)y'+(x+2)y=0; \quad y_1=e^x\)

    23. \(x^2y''-(2a-1)xy'+a^2y=0; \quad y_1=x^a\)

    24. \(x^2y''-2xy'+(x^2+2)y=0; \quad y_1=x \sin x\)

    25. \(xy''-(4x+1)y'+(4x+2)y=0; \quad y_1=e^{2x}\)

    26. \(4x^2(\sin x)y''-4x(x\cos x+\sin x)y'+(2x\cos x+3\sin x)y=0; \quad y_1=x^{1/2}\)

    27. \(4x^2y''-4xy'+(3-16x^2)y=0; \quad y_1=x^{1/2}e^{2x}\)

    28. \((2x+1)xy''-2(2x^2-1)y'-4(x+1)y=0; \quad y_1=1/x\)

    29. \((x^2-2x)y''+(2-x^2)y'+(2x-2)y=0; \quad y_1=e^x\)

    30. \(xy''-(4x+1)y'+(4x+2)y=0; \quad y_1=e^{2x}\)

    Q5.6.3

    In Exercises 5.6.31-5.6.33 solve the initial value problem, given that \(y_{1}\) satisfies the complementary equation.

    31. \(x^2y''-3xy'+4y=4x^4,\quad y(-1)=7,\quad y'(-1)=-8; \quad y_1=x^2\)

    32. \((3x-1)y''-(3x+2)y'-(6x-8)y=0, \quad y(0)=2,\; y'(0)=3; \quad y_1=e^{2x}\)

    33. \((x+1)^2y''-2(x+1)y'-(x^2+2x-1)y=(x+1)^3e^x, \quad y(0)=1,\quad y'(0)=~-1; \quad y_1=(x+1)e^x\)

    Q5.6.4

    In Exercises 5.6.34 and 5.6.35 solve the initial value problem and graph the solution, given that \(y_{1}\) satisfies the complementary equation.

    34. \(x^2y''+2xy'-2y=x^2, \quad y(1)={5\over4},\; y'(1)={3\over2}; \quad y_1=x\)

    35. \((x^2-4)y''+4xy'+2y=x+2, \quad y(0)=-{1\over3},\quad y'(0)=-1; \quad y_1={1\over x-2}\)

    Q5.6.5

    36. Suppose \(p_1\) and \(p_2\) are continuous on \((a,b)\). Let \(y_1\) be a solution of

    \[y''+p_1(x)y'+p_2(x)y=0 \tag{A}\]

    that has no zeros on \((a,b)\), and let \(x_0\) be in \((a,b)\). Use reduction of order to show that \(y_1\) and

    \[y_2(x)=y_1(x)\int^x_{x_0}{1\over y^2_1(t)} \exp \left(-\int^t_{x_0}p_1(s)\, ds\right)\,dt\]

    form a fundamental set of solutions of (A) on \((a,b)\).

    37. The nonlinear first order equation

    \[y'+y^2+p(x)y+q(x)=0 \tag{A}\]

    is a Riccati equation. (See Exercise 2.4.55.) Assume that \(p\) and \(q\) are continuous.

    1. Show that \(y\) is a solution of (A) if and only if \(y={z'/z}\), where \[z''+p(x)z'+q(x)z=0. \tag{B}\]
    2. Show that the general solution of (A) is \[y={c_1z'_1+c_2z'_2\over c_1z_1+c_2z_2}, \tag{C}\] where \(\{z_1,z_2\}\) is a fundamental set of solutions of (B) and \(c_1\) and \(c_2\) are arbitrary constants.
    3. Does the formula (C) imply that the first order equation (A) has a two–parameter family of solutions? Explain your answer.

    38. Use a method suggested by Exercise 5.6.37 to find all solutions. of the equation.

    1. \(y'+y^2+k^2=0\)
    2. \(y'+y^2-3y+2=0\)
    3. \(y'+y^2+5y-6=0\)
    4. \(y'+y^2+8y+7=0\)
    5. \(y'+y^2+14y+50=0\)
    6. \(6y'+6y^2-y-1=0\)
    7. \(36y'+36y^2-12y+1=0\)

    39. Use a method suggested by Exercise 5.6.37 and reduction of order to find all solutions of the equation, given that \(y_1\) is a solution.

    1. \(x^2(y'+y^2)-x(x+2)y+x+2=0; \quad y_1=1/x\)
    2. \(y'+y^2+4xy+4x^2+2=0; \quad y_1=-2x\)
    3. \((2x+1)(y'+y^2)-2y-(2x+3)=0; \quad y_1=-1\)
    4. \((3x-1)(y'+y^2)-(3x+2)y-6x+8=0; \quad y_1=2\)
    5. \({x^2(y'+y^2)+xy+x^2- {1\over 4}=0; \quad y_1=-\tan x -{1\over 2x}}\)
    6. \({x^2(y'+y^2)-7xy+7=0; \quad y_1=1/x}\)

    40. The nonlinear first order equation

    \[y'+r(x)y^2+p(x)y+q(x)=0 \tag{A}\]

    is the generalized Riccati equation. (See Exercise 2.4.55.) Assume that \(p\) and \(q\) are continuous and \(r\) is differentiable.

    1. Show that \(y\) is a solution of (A) if and only if \(y={z'/rz}\), where \[z''+\left[p(x)-{r'(x)\over r(x)}\right] z'+r(x)q(x)z=0. \tag{B}\]
    2. Show that the general solution of (A) is \[y={c_1z'_1+c_2z'_2\over r(c_1z_1+c_2z_2)},\] where \(\{z_1,z_2\}\) is a fundamental set of solutions of (B) and \(c_1\) and \(c_2\) are arbitrary constants.

    This page titled 5.6E: Reduction of Order (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?