Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

Section 10.4 Answers

  • Page ID
    30067
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    1. \({\bf y}=c_{1}\left[\begin{array}{c}{1}\\{1}\end{array}\right]e^{3t}+c_{2}\left[\begin{array}{c}{1}\\{-1}\end{array}\right]e^{-t}\)

    2. \({\bf y}=c_{1}\left[\begin{array}{c}{1}\\{1}\end{array}\right]e^{-t/2}+c_{2}\left[\begin{array}{c}{-1}\\{1}\end{array}\right]e^{-2t}\)

    3. \({\bf y}=c_{1}\left[\begin{array}{c}{-3}\\{1}\end{array}\right]e^{-t}+c_{2}\left[\begin{array}{c}{-1}\\{2}\end{array}\right]e^{-2t}\)

    4. \({\bf y}=c_{1}\left[\begin{array}{c}{2}\\{1}\end{array}\right]e^{-3t}+c_{2}\left[\begin{array}{c}{-2}\\{1}\end{array}\right]e^{t}\)

    5. \({\bf y}=c_{1}\left[\begin{array}{c}{1}\\{1}\end{array}\right]e^{-2t}+c_{2}\left[\begin{array}{c}{-4}\\{1}\end{array}\right]e^{3t}\)

    6. \({\bf y}=c_{1}\left[\begin{array}{c}{3}\\{2}\end{array}\right]e^{2t}+c_{2}\left[\begin{array}{c}{1}\\{1}\end{array}\right]e^{t}\)

    7.  \({\bf y}=c_{1}\left[\begin{array}{c}{-3}\\{1}\end{array}\right]e^{-5t}+c_{2}\left[\begin{array}{c}{-1}\\{1}\end{array}\right]e^{-3t}\)

    8.  \({\bf y}=c_{1}\left[\begin{array}{c}{1}\\{2}\\{1}\end{array}\right]e^{-3t}+c_{2}\left[\begin{array}{c}{-1}\\{-4}\\{1}\end{array}\right]e^{-t}+c_{3}\left[\begin{array}{c}{-1}\\{-1}\\{1}\end{array}\right]e^{2t}\)

    9.  \({\bf y}=c_{1}\left[\begin{array}{c}{2}\\{1}\\{2}\end{array}\right]e^{-16t}+c_{2}\left[\begin{array}{c}{-1}\\{2}\\{0}\end{array}\right]e^{2t}+c_{3}\left[\begin{array}{c}{-1}\\{0}\\{1}\end{array}\right]e^{2t}\)

    10.  \({\bf y}=c_{1}\left[\begin{array}{c}{-2}\\{-4}\\{3}\end{array}\right]e^{t}+c_{2}\left[\begin{array}{c}{-1}\\{1}\\{0}\end{array}\right]e^{-2t}+c_{3}\left[\begin{array}{c}{-7}\\{-5}\\{4}\end{array}\right]e^{2t}\)

    11.  \({\bf y}=c_{1}\left[\begin{array}{c}{-1}\\{-1}\\{1}\end{array}\right]e^{-2t}+c_{2}\left[\begin{array}{c}{-1}\\{-2}\\{1}\end{array}\right]e^{-3t}+c_{3}\left[\begin{array}{c}{-2}\\{-6}\\{3}\end{array}\right]e^{-5t}\)

    12.  \({\bf y}=c_{1}\left[\begin{array}{c}{11}\\{7}\\{1}\end{array}\right]e^{3t}+c_{2}\left[\begin{array}{c}{1}\\{2}\\{1}\end{array}\right]e^{-2t}+c_{3}\left[\begin{array}{c}{1}\\{1}\\{1}\end{array}\right]e^{-t}\)

    13.  \({\bf y}=c_{1}\left[\begin{array}{c}{4}\\{-1}\\{1}\end{array}\right]e^{-4t}+c_{2}\left[\begin{array}{c}{-1}\\{-1}\\{1}\end{array}\right]e^{6t}+c_{3}\left[\begin{array}{c}{-1}\\{0}\\{1}\end{array}\right]e^{4t}\)

    14.  \({\bf y}=c_{1}\left[\begin{array}{c}{1}\\{1}\\{5}\end{array}\right]e^{-5t}+c_{2}\left[\begin{array}{c}{-1}\\{0}\\{1}\end{array}\right]e^{5t}+c_{3}\left[\begin{array}{c}{1}\\{1}\\{0}\end{array}\right]e^{5t}\)

    15.  \({\bf y}=c_{1}\left[\begin{array}{c}{1}\\{-1}\\{2}\end{array}\right]+c_{2}\left[\begin{array}{c}{-1}\\{0}\\{3}\end{array}\right]e^{6t}+c_{3}\left[\begin{array}{c}{1}\\{3}\\{0}\end{array}\right]e^{6t}\)

    16. \({\bf y}=-\left[\begin{array}{c}{2}\\{6}\end{array}\right]e^{5t}+\left[\begin{array}{c}{4}\\{2}\end{array}\right]e^{-5t}\)

    17. \({\bf y}=\left[\begin{array}{c}{2}\\{-4}\end{array}\right]e^{t/2}+\left[\begin{array}{c}{-2}\\{1}\end{array}\right]e^{t}\)

    18. \({\bf y}=\left[\begin{array}{c}{7}\\{7}\end{array}\right]e^{9t}-\left[\begin{array}{c}{2}\\{4}\end{array}\right]e^{-3t}\)

    19. \({\bf y}=\left[\begin{array}{c}{3}\\{9}\end{array}\right]e^{5t}-\left[\begin{array}{c}{4}\\{2}\end{array}\right]e^{-5t}\)

    20. \({\bf y}=\left[\begin{array}{c}{5}\\{5}\\{0}\end{array}\right]e^{t/2}+\left[\begin{array}{c}{0}\\{0}\\{1}\end{array}\right]e^{t/2}+\left[\begin{array}{c}{-1}\\{2}\\{0}\end{array}\right]e^{-t/2}\)

    21. \({\bf y}=\left[\begin{array}{c}{3}\\{3}\\{3}\end{array}\right]e^{t}+\left[\begin{array}{c}{-2}\\{-2}\\{2}\end{array}\right]e^{-t}\)

    22. \({\bf y}=\left[\begin{array}{c}{2}\\{-2}\\{2}\end{array}\right]e^{t}-\left[\begin{array}{c}{3}\\{0}\\{3}\end{array}\right]e^{-2t}+\left[\begin{array}{c}{1}\\{1}\\{0}\end{array}\right]e^{3t}\)

    23. \({\bf y}=-\left[\begin{array}{c}{1}\\{2}\\{1}\end{array}\right]e^{t}+\left[\begin{array}{c}{4}\\{2}\\{4}\end{array}\right]e^{-t}+\left[\begin{array}{c}{1}\\{1}\\{0}\end{array}\right]e^{2t}\)

    24. \({\bf y}=\left[\begin{array}{c}{-2}\\{-2}\\{2}\end{array}\right]e^{2t}-\left[\begin{array}{c}{0}\\{3}\\{0}\end{array}\right]e^{-2t}+\left[\begin{array}{c}{4}\\{12}\\{4}\end{array}\right]e^{4t}\)

    25. \({\bf y}=\left[\begin{array}{c}{-1}\\{-1}\\{1}\end{array}\right]e^{-6t}+\left[\begin{array}{c}{2}\\{-2}\\{2}\end{array}\right]e^{2t}+\left[\begin{array}{c}{7}\\{-7}\\{-7}\end{array}\right]e^{4t}\)

    26. \({\bf y}=\left[\begin{array}{c}{1}\\{4}\\{4}\end{array}\right]e^{-t}+\left[\begin{array}{c}{6}\\{6}\\{-2}\end{array}\right]e^{2t}\)

    27. \({\bf y}=\left[\begin{array}{c}{4}\\{-2}\\{2}\end{array}\right]+\left[\begin{array}{c}{3}\\{-9}\\{6}\end{array}\right]e^{4t}+\left[\begin{array}{c}{-1}\\{1}\\{-1}\end{array}\right]e^{2t}\)

    29. Half lines of \(L_{1} : y_{2} = y_{1}\) and \(L_{2} : y_{2} = −y_{1}\) are trajectories other trajectories are asymptotically tangent to \(L_{1}\) as \(t → −∞\) and asymptotically tangent to \(L_{2}\) as \(t → ∞\).

    30. Half lines of \(L_{1} : y_{2} = −2y_{1}\) and \(L_{2} : y_{2} = −y_{1}/3\) are trajectories other trajectories are asymptotically parallel to \(L_{1}\) as \(t → −∞\) and asymptotically tangent to \(L_{2}\) as \(t → ∞\).

    31. Half lines of \(L_{1} : y_{2} = y_{1}/3\) and \(L_{2} : y_{2} = −y_{1}\) are trajectories other trajectories are asymptotically tangent to \(L_{1}\) as \(t → −∞\) and asymptotically parallel to \(L_{2}\) as \(t → ∞\).

    32. Half lines of \(L_{1} : y_{2} = y_{1}/2\) and \(L_{2} : y_{2} = −y_{1}\) are trajectories other trajectories are asymptotically tangent to \(L_{1}\) as \(t → −∞\) and asymptotically tangent to \(L_{2}\) as \(t → ∞\).

    33.  Half lines of \(L_{1} : y_{2} = −y_{1}/4\) and \(L_{2} : y_{2} = −y_{1}\) are trajectories other trajectories are asymptotically tangent to \(L_{1}\) as \(t → −∞\) and asymptotically parallel to \(L_{2}\) as \(t → ∞\).

    34. Half lines of \(L_{1} : y_{2} = −y_{1}\) and \(L_{2} : y_{2} = 3y_{1}\) are trajectories other trajectories are asymptotically parallel to \(L_{1}\) as \(t → −∞\) and asymptotically tangent to \(L_{2}\) as \(t → ∞\).

    36. Points on \(L_{2} : y_{2} = y_{1}\) are trajectories of constant solutions. The trajectories of nonconstant solutions are half-lines on either side of \(L_{1}\), parallel to \(\left[\begin{array}{c}{1}\\{-1}\end{array}\right]\), traversed toward L1.

    37. Points on \(L_{1} : y_{2} = −y_{1}/3\) are trajectories of constant solutions. The trajectories of nonconstant solutions are half-lines on either side of \(L_{1}\), parallel to \(\left[\begin{array}{c}{-1}\\{2}\end{array}\right]\), traversed away from \(L_{1}\).

    38. Points on \(L_{1} : y_{2} = y_{1}/3\) are trajectories of constant solutions. The trajectories of nonconstant solutions are half-lines on either side of \(L_{1}\), parallel to \(\left[\begin{array}{c}{1}\\{-1}\end{array}\right]\),\(\left[\begin{array}{c}{-1}\\{1}\end{array}\right]\), traversed away from \(L_{1}\).

    39. Points on \(L_{1} : y_{2} = y_{1}/2\) are trajectories of constant solutions. The trajectories of nonconstant solutions are half-lines on either side of \(L_{1}\), parallel to \(\left[\begin{array}{c}{1}\\{-1}\end{array}\right]\), \(L_{1}\).

    40. Points on \(L_{2} : y_{2} = −y_{1}\) are trajectories of constant solutions. The trajectories of nonconstant solutions are half-lines on either side of \(L_{2}\), parallel to \(\left[\begin{array}{c}{-4}\\{1}\end{array}\right]\), traversed toward \(L_{1}\).

    41. Points on \(L_{1} : y_{2} = 3y_{1}\) are trajectories of constant solutions. The trajectories of nonconstant solutions are half-lines on either side of \(L_{1}\), parallel to \(\left[\begin{array}{c}{1}\\{-1}\end{array}\right]\), traversed away from \(L_{1}\).