$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

1. $$y=3\cos 4\sqrt{6}t-\frac{1}{2\sqrt{6}}\sin 4\sqrt{6}t\text{ ft}$$

2. $$y=-\frac{1}{4}\cos 8\sqrt{5}t-\frac{1}{4\sqrt{5}}\sin 8\sqrt{5} t\text{ ft}$$

3. $$y=1.5\cos 14\sqrt{10t}\text{ cm}$$

4. $$y=\frac{1}{4}\cos 8t-\frac{1}{16}\sin 8t\text{ ft};\: R=\frac{\sqrt{17}}{16}\text{ ft};\: \omega _{0}=8\text{ rad/s};\: T= \pi /4\text{ s};\:\phi\approx -.245\text{ rad}\approx -14.04^{\circ}$$

5. $$y=10\cos 14t+\frac{25}{14}\sin 14t\text{ cmt};\: R=\frac{\sqrt{5}}{14}\sqrt{809}\text{ cm};\: \omega _{0}=14\text{ rad/s};\: T= \pi /7\text{ s};\:\phi\approx .177\text{ rad}\approx 10.12^{\circ}$$

6. $$y=-\frac{1}{4}\cos \sqrt{70}t+\frac{2}{\sqrt{70}}\sin \sqrt{70}t\text{ m};\: R=\frac{1}{4}\sqrt{\frac{67}{35}}\text{ m};\: \omega _{0}=\sqrt{70}\text{ rad/s};\: T= 2\pi /\sqrt{70}\text{ s};\:\phi\approx 2.38\text{ rad}\approx 136.28^{\circ}$$

7. $$y=\frac{2}{3}\cos 16t-\frac{1}{4}\sin 16t\text{ ft}$$

8. $$y=\frac{1}{2}\cos 8t-\frac{3}{8}\sin 8t\text{ ft}$$

9. $$.72\text{ m}$$

10. $$y=\frac{1}{3}\sin t+\frac{1}{2}\cos 2t+\frac{5}{6}\sin 2t\text{ ft}$$

11. $$y=\frac{16}{5}\left(4\sin\frac{t}{4}-\sin t \right)$$

12. $$y=-\frac{1}{16}\sin 8t+\frac{1}{3}\cos 4\sqrt{2}t-\frac{1}{8\sqrt{2}}\sin 4\sqrt{2}t$$

13. $$y=-t\cos 8t-\frac{1}{6}\cos 8t+\frac{1}{8}\sin 8t\text{ ft}$$

14. $$T=4\sqrt{2}\text{ s}$$

15. $$\omega = 8\text{ rad/s}\: y=-\frac{t}{16}(-\cos 8t+2\sin 8t)+\frac{1}{128}\sin 8t\text{ ft}$$

16. $$\omega = 4\sqrt{6}\text{ rad/s};\: y=-\frac{t}{\sqrt{6}}\left[\frac{8}{3}\cos 4\sqrt{6t}+4\sin 4\sqrt{6t} \right]+\frac{1}{9}\sin 4\sqrt{6}t\text{ ft}$$

17. $$y=\frac{t}{2}\cos 2t-\frac{t}{4}\sin 2t+3\cos 2t+2\sin 2t\text{ m}$$

18. $$y=y_{0}\cos\omega_{0}t+\frac{v_{0}}{\omega _{0}}\sin\omega _{0}t;\: R=\frac{1}{\omega _{0}}\sqrt{(\omega _{0}y_{0})^{2}+(v_{0})^{2}};\: \cos\phi=\frac{y_{0}\omega _{0}}{\sqrt{(\omega _{0}y_{0})^{2}+(v_{0})^{2}}};\:\sin\phi=\frac{v_{0}}{\sqrt{(\omega_{0}y_{0})^{2}+(v_{0})^{2}}}$$

19. The object with the longer period weighs four times as much as the other.

20. $$T_{2}=\sqrt{2}T_{1}$$, where $$T_{1}$$ is the period of the smaller object

21. $$k_{1}=9k_{2}$$, where $$k_{1}$$ is the spring constant of the system with the shorter period.