Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

Section 6.3 Answers

  • Page ID
    28916
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    1. \(I=e^{-15t}\left(2\cos 5\sqrt{15t}-\frac{6}{\sqrt{31}}\sin 5\sqrt{31}t \right)\)

    2. \(I = e^{−20t} (2 \cos 40t − 101 \sin 40t)\)

    3. \(I=-\frac{200}{3}e^{-10t}\sin 30t\)

    4. \(I = −10e^{−30t} (\cos 40t + 18 \sin 40t)\)

    5. \(I = −e^{−40t} (2 \cos 30t − 86 \sin 30t)\)

    6. \(I_{p}=-\frac{1}{3}(\cos 10t+2\sin 10t)\)

    7. \(I_{p}=\frac{20}{37}(\cos 25t-6\sin 25t)\)

    8. \(I_{p} = \frac{3}{13} (8 \cos 50t − \sin 50t)\)

    9. \(I_{p} = \frac{20}{123} (17 \sin 100t − 11 \cos 100t)\)

    10. \(I_{p} = − \frac{45}{52} (\cos 30t + 8 \sin 30t)\)

    12. \(\omega _{0}=1/\sqrt{LC}\quad \text{maximum amplitude }=\sqrt{U^{2}+V^{2}}/R\)