Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

Section 8.6 Answers

  • Page ID
    29609
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    1. 

    1. \(\frac{1}{2}\int_{0}^{t}\tau\sin 2(t-\tau )d\tau \)
    2. \(\int_{0}^{t}e^{-2\tau }\cos 3(t-\tau )d\tau \)
    3. \(\frac{1}{2}\int_{0}^{t}\sin 2\tau\cos 3(t-\tau )d\tau\) or \(\frac{1}{3}\int_{0}^{t}\sin 3\tau\cos 2(t-\tau )d\tau \)
    4. \(\int_{0}^{t}\cos\tau\sin (t-\tau )d\tau \)
    5. \(\int_{0}^{t}e^{a\tau }d\tau \)
    6. \(e^{-t}\int_{0}^{t}\sin (t-\tau )d\tau \)
    7. \(e^{-2t}\int_{0}^{t}\tau e^{\tau }\sin (t-\tau )d\tau \)
    8. \(\frac{e^{-2t}}{2}\int_{0}^{t}\tau ^{2}(t-\tau )e^{3\tau }d\tau \)
    9. \(\int_{0}^{t}(t-\tau )e^{\tau }\cos\tau d\tau \)
    10. \(\int_{0}^{t}e^{-3\tau }\cos\tau\cos 2(t-\tau )d\tau \)
    11. \(\frac{1}{4!5!}\int_{0}^{t}\tau ^{4}(t-\tau )^{5}e^{3\tau }d\tau \)
    12. \(\frac{1}{4}\int_{0}^{t}\tau ^{2}e^{\tau }\sin 2(t-\tau )d\tau \)
    13. \(\frac{1}{2}\int_{0}^{t}\tau (t-\tau )^{2}e^{2(t-\tau )}d\tau \)
    14. \(\frac{1}{5!6!}\int_{0}^{t}(t-\tau )^{5}e^{2(t-\tau )}\tau ^{6}d\tau \)

    2. 

    1. \(\frac{as}{(s^{2}+a^{2})(s^{2}+b^{2})}\)
    2. \(\frac{a}{(s-1)(s^{2}+a^{2})}\)
    3. \(\frac{as}{(s^{2}-a^{2})^{2}}\)
    4. \(\frac{2\omega s(s^{2}-\omega ^{2})}{(s^{2}+\omega ^{2})^{4}}\)
    5. \(\frac{(s-1)\omega }{((s-1)^{2}+\omega ^{2})^{2}}\)
    6. \(\frac{2}{(s-2)^{3}(s-1)^{2}}\)
    7. \(\frac{s+1}{(s+2)^{2}\left[(s+1)^{2}+\omega ^{2}\right]}\)
    8. \(\frac{1}{(s-3)((s-1)^{2}-1)}\)
    9. \(\frac{2}{(s-2)^{2}(s^{2}+4)}\)
    10. \(\frac{6}{s^{4}(s-1)}\)
    11. \(\frac{3\cdot 6!}{s^{7}\left[(s+1)^{2}+9\right]}\)
    12. \(\frac{12}{s^{7}}\)
    13. \(\frac{2\cdot 7!}{s^{8}\left[ (s+1)^{2}+4\right]}\)
    14. \(\frac{48}{s^{5}(s^{2}+4)}\)

    3. 

    1. \(y=\frac{2}{\sqrt{5}}\int_{0}^{t}f(t-\tau )e^{-3\tau /2}\sinh\frac{\sqrt{5}\tau }{2}d\tau \)
    2. \(y=\frac{1}{2}\int_{0}^{t}f(t-\tau )\sin 2\tau d\tau\)
    3. \(y=\int_{0}^{t}\tau e^{-\tau }f(t-\tau )d\tau \)
    4. \(y(t)=-\frac{1}{k}\sin kt+\cos kt+\frac{1}{k}\int_{0}^{t} f(t-\tau )\sin k\tau d\tau \)
    5. \(y=-2te^{-3t}+\int_{0}^{t}\tau e^{-3\tau }f(t-\tau )d\tau \)
    6. \(y=\frac{3}{2}\sinh 2t+\frac{1}{2}\int _{0}^{t} f(t-\tau )\sinh 2\tau d\tau \)
    7. \(y=e^{3t}+\int_{0}^{t}(e^{3\tau }-e^{2\tau })f(t-\tau )d\tau \)
    8. \(y=\frac{k_{1}}{\omega }\sin\omega t+k_{0}\cos\omega t+\frac{1}{\omega}\int_{0}^{t}f(t-\tau )\sin\omega\tau d\tau \)

    4. 

    1. \(y=\sin t\)
    2. \(y=te^{-t}\)
    3. \(y=1+2te^{t}\)
    4. \(y=t+\frac{t^{2}}{2}\)
    5. \(y=4+\frac{5}{2}t^{2}+\frac{1}{24}t^{4}\)
    6. \(y=1-t\)

    5. 

    1. \(\frac{7!8!}{16!}t^{16}\)
    2. \(\frac{13!7!}{21!}t^{21}\)
    3. \(\frac{6!7!}{14!}t^{14}\)
    4. \(\frac{1}{2}(e^{-t}+\sin t-\cos t)\)
    5. \(\frac{1}{3}(\cos t-\cos 2t)\)