Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

2.2.1: A Linearization Method

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    We can transform the inhomogeneous Equation (2.2.1) into a homogeneous linear equation for an unknown function of three variables by the following trick.

    We are looking for a function \(\psi(x,y,u)\) such that the solution \(u=u(x,y)\) of Equation (2.2.1) is defined implicitly by \(\psi(x,y,u)=const.\) Assume there is such a function \(\psi\) and let \(u\) be a solution of (2.2.1), then

    \psi_x+\psi_uu_x=0,\ \ \psi_y+\psi_uu_y=0.
    Assume \(\psi_u\not=0\), then
    u_x=-\frac{\psi_x}{\psi_u},\ \ u_y=-\frac{\psi_y}{\psi_u}.
    From (2.2.1) we obtain
    where \(z:=u\).

    We consider the associated system of characteristic equations

    One arrives at this system by the same arguments as in the two-dimensional case above.

    Proposition 2.2. (i) Assume \(w\in C^1\), \(w=w(x,y,z)\), is an integral, i. e., it is constant along each fixed solution of (\ref{homthree}), then \(\psi=w(x,y,z)\) is a solution of (\ref{homthree}).

    (ii) The function \(z=u(x,y)\), implicitly defined through \(\psi(x,u,z)=const.\), is a solution of (2.2.1), provided that \(\psi_z\not=0\).

    (iii) Let \(z=u(x,y)\) be a solution of (2.2.1) and let \((x(t),y(t))\) be a solution
    x'(t)=a_1(x,y,u(x,y)),\ \ y'(t)=a_2(x,y,u(x,y)),
    then \(z(t):=u(x(t),y(t))\) satisfies the third of the above characteristic equations.

    Proof. Exercise.