Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

9.2: Singular Points

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    As usual there is a snag. Most equations of interest are of a form where \(p\) and/or \(q\) are singular at the point \(t_0\) (usually \(t_0=0\)). Any point \(t_0\) where \(p(t)\) and \(q(t)\) are singular is called a singular point. Of most interest are a special class of singular points called regular singular points, where the differential equation can be given as

    \[(t-t_0)^2 y''(t) + (t-t_0) \alpha(t) y'(t) + \beta(t)y(t) = 0,\]

    with \(\alpha\) and \(\beta\) analytic at \(t=t_0\). Let us assume that this point is \(t_0=0\). Frobenius’ method consists of the following technique: In the equation

    \[x^2 y''(x) + x \alpha(x) y'(x) + \beta(x)y(x) = 0,\]

    we assume a generalised series solution of the form

    \[y(x)=x^\gamma \sum_{n=0}^\infty c_n x^k .\]

    Equating powers of \(x\) we find \[\gamma(\gamma-1) c_0 x^\gamma + \alpha_0 \gamma c_0 x^\gamma + \beta_0c_0 x^\gamma = 0,\] etc. The equation for the lowest power of \(x\) can be rewritten as

    \[\gamma(\gamma-1) + \alpha_0\gamma + \beta_0 = 0. \label{indicial}\]

    Equation \ref{indicial} is called the indicial equation. It is a quadratic equation in \(\gamma\), that usually has two (complex) roots. Let me call these \(\gamma_1\), \(\gamma_2\). If \(\gamma_1-\gamma_2\) is not integer one can prove that the two series solutions for \(y\) with these two values of \(\gamma\) are independent solutions.

    Let us look at an example \[t^2 y''(t) + \frac{3}{2} t y'(t) + ty = 0.\] Here \(\alpha(t)=3/2\), \(\beta(t)=t\), so \(t=0\) is indeed a regular singular point. The indicial equation is

    \[\gamma(\gamma-1)+\frac{3}{2}\gamma = \gamma^2+\gamma/2 = 0.\]

    which has roots \(\gamma_1=0\), \(\gamma_2=-1/2\), which gives two independent solutions

    \[\begin{align} y_1(t)&= \sum_{k}c_kt^k,\nonumber\\ y_2(t)&= t^{-1/2}\sum_{k}d_kt^k.\nonumber\end{align}\]


    Independent solutions are really very similar to independent vectors: Two or more functions are independent if none of them can be written as a combination of the others. Thus \(x\) and \(1\) are independent, and \(1+x\) and \(2+x\) are dependent.