Skip to main content
Mathematics LibreTexts

1.2: Linear Constant Coefficient Equations

  • Page ID
    90243
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Let’s consider the linear first order constant coefficient partial differential equation

    \[\label{eq:1}au_x+bu_y+cu=f(x,y), \]

    for \(a,\: b,\) and \(c\) constants with \(a^2 + b^2 > 0\). We will consider how such equations might be solved. We do this by considering two cases, \(b = 0\) and \(b\neq 0\).

    Integrating this equation and solving for \(u(x, y)\), we have

    \[\begin{align}\mu (x)u(x,y)&=\frac{1}{a}\int f(\xi ,y)\mu (\xi )d\xi +g(y) \nonumber \\ e^{\frac{c}{a}x}u(x,y)&=\frac{1}{a}\int f(\xi ,y)e^{\frac{c}{a}\xi}d\xi +g(y)\nonumber \\ u(x,y)&=\frac{1}{a}\int f(\xi ,y)e^{\frac{c}{a}(\xi -x)}d\xi +g(y)e^{-\frac{c}{a}x}.\label{eq:2}\end{align} \]

    Here \(g(y)\) is an arbitrary function of \(y\).

    For the second case, \(b\neq 0\), we have to solve the equation

    \[au_x+bu_y+cu=f.\nonumber \]

    It would help if we could find a transformation which would eliminate one of the derivative terms reducing this problem to the previous case. That is what we will do.

    We first note that

    \[\begin{align}au_x+bu_y&=(a\mathbf{i}+b\mathbf{j})\cdot (u_x\mathbf{i}+u_y\mathbf{j})\nonumber \\ &=(a\mathbf{i}+b\mathbf{j})\cdot\nabla u.\label{eq:3}\end{align} \]

    Recall from multivariable calculus that the last term is nothing but a directional derivative of \(u(x, y)\) in the direction \(a\mathbf{i} + b\mathbf{j}\). [Actually, it is proportional to the directional derivative if \(a\mathbf{i} + b\mathbf{j}\) is not a unit vector.]

    clipboard_e5ff7dc6653cdafb3986037177d2fa8db.png
    Figure \(\PageIndex{1}\): Coordinate systems for transforming \(au_x + bu_y + cu = f\) into \(bv_z + cv = f\) using the transformation \(w = bx − ay\) and \(z = y\).

    Therefore, we seek to write the partial differential equation as involving a derivative in the direction \(a\mathbf{i} + b\mathbf{j}\) but not in a directional orthogonal to this. In Figure \(\PageIndex{1}\) we depict a new set of coordinates in which the \(w\) direction is orthogonal to \(a\mathbf{i} + b\mathbf{j}\).

    We consider the transformation

    \[\begin{align}w&=bx-ay, \nonumber \\ z&=y.\label{eq:4}\end{align} \]

    We first note that this transformation is invertible,

    \[\begin{align} x&=\frac{1}{b}(w+az), \nonumber \\ y&=z.\label{eq:5}\end{align} \]

    Next we consider how the derivative terms transform. Let \(u(x, y) = v(w, z)\). Then, we have

    \[\begin{align}au_x+bu_y&=a\frac{\partial}{\partial x}v(w,z)+b\frac{\partial}{\partial y}v(w,z),\nonumber \\ &=a\left[\frac{\partial v}{\partial w}\frac{\partial w}{\partial x}+\frac{\partial v}{\partial z}\frac{\partial z}{\partial x}\right] \nonumber \\ &\: +b\left[\frac{\partial v}{\partial w}\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\frac{\partial z}{\partial y}\right] \nonumber \\ &=a[bv_w+0\cdot v_z]+b[-av_w+v_z]\nonumber \\ &=bv_z.\label{eq:6}\end{align} \]

    Therefore, the partial differential equation becomes

    \[bv_z+cv=f\left(\frac{1}{b}(w+az),z\right).\nonumber \]

    This is now in the same form as in the first case and can be solved using an integrating factor.

    Example \(\PageIndex{1}\)

    Find the general solution of the equation \(3u_x − 2u_y + u = x\).

    Solution

    First, we transform the equation into new coordinates.

    \[w=bx-ay=-2x-3y,\nonumber \]

    and \(z=y\). The,

    \[\begin{align}u_x-2u_y&=3[-2v_w+0\cdot v_z]-2[-3v_w+v_z] \nonumber \\ &=-2v_z.\label{eq:7}\end{align} \]

    Using this integrating factor, we can solve the differential equation for \(v(w, z)\).

    \[\begin{align}\frac{\partial}{\partial z}\left(e^{-z/2}v\right)&=\frac{1}{4}(w+3z)e^{-z/2},\nonumber \\ e^{-z/2}v(w,z)&=\frac{1}{4}\int^z (w+3\xi )e^{-\xi /2}d\xi \nonumber \\ &=-\frac{1}{2}(w+6+3z)e^{-z/2}+c(w) \nonumber \\ v(w,z)&=-\frac{1}{2}(w+6+3z)+c(w)e^{z/2}\nonumber \\ u(x,y)&=x-3+c(-2x-3y)e^{y/2}.\label{eq:8}\end{align} \]


    This page titled 1.2: Linear Constant Coefficient Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.