Skip to main content
Mathematics LibreTexts

2.8: Problems

  • Page ID
    90923
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    Solve the following initial value problems.

    1. \(x''+x=0,\quad x(0)=2,\quad x'(0)=0\).
    2. \(y''+2y'-8y=0,\quad y(0)=1,\quad y'(0)=2\).
    3. \(x^2y''-2xy'-4y=0,\quad y(1)=1,\quad y'(1)=0\).

    Exercise \(\PageIndex{2}\)

    Solve the following boundary value problems directly, when possible.

    1. \(x''+x=2,\quad x(0)=0,\quad x'(1)=0\).
    2. \(y''+2y'-8y=0,\quad y(0)=1,\quad y(1)=0\).
    3. \(y''+y=0,\quad y(0)=1,\quad y(\pi )=0\).

    Exercise \(\PageIndex{3}\)

    Consider the boundary value problem for the deflection of a horizontal beam fixed at one end,

    \[\frac{d^4y}{dx^4}=C,\quad y(0)=0,\quad y'(0)=0,\quad y''(L)=0,\quad y'''(L)=0.\nonumber\]

    Solve this problem assuming that \(C\) is a constant.

    Exercise \(\PageIndex{4}\)

    Find the product solutions, \(u(x, t) = T(t)X(x)\), to the heat equation, \(u_t − u_{xx} = 0\), on \([0, π]\) satisfying the boundary conditions \(u_x(0, t) = 0\) and \(u(π, t) = 0\).

    Exercise \(\PageIndex{5}\)

    Find the product solutions, \(u(x, t) = T(t)X(x)\), to the wave equation \(u_{tt} = 2u_{xx}\), on \([0, 2π]\) satisfying the boundary conditions \(u(0, t) = 0\) and \(u_x(2π, t) = 0\).

    Exercise \(\PageIndex{6}\)

    Find product solutions, \(u(x, t) = X(x)Y(y)\), to Laplace’s equation, \(u_{xx} + u_{yy} = 0\), on the unit square satisfying the boundary conditions \(u(0, y) = 0\), \(u(1, y) = g(y)\), \(u(x, 0) = 0\), and \(u(x, 1) = 0\).

    Exercise \(\PageIndex{7}\)

    Consider the following boundary value problems. Determine the eigenvalues, \(λ\), and eigenfunctions, \(y(x)\) for each problem.

    1. \(y'' + λy = 0,\quad y(0) = 0,\quad y'(1) = 0\).
    2. \(y'' − λy = 0,\quad y(−π) = 0,\quad y'(π) = 0\).
    3. \(x^2y'' + xy' + λy = 0,\quad y(1) = 0,\quad y(2) = 0\).
    4. \((x^2y')'+\lambda y=0,\quad y(1)=0,\quad y'(e)=0\).

    Note

    In problem d you will not get exact eigenvalues. Show that you obtain a transcendental equation for the eigenvalues in the form \(\tan z = 2z\). Find the first three eigenvalues numerically.

    Exercise \(\PageIndex{8}\)

    Classify the following equations as either hyperbolic, parabolic, or elliptic.

    1. \(u_{yy} + u_{xy} + u_{xx} = 0\).
    2. \(3u_{xx} + 2u_{xy} + 5u_{yy} = 0\).
    3. \(x^2u_{xx}+2xyu_{xy}+y^2u_{yy}=0\).
    4. \(y^2u_{xx}+2xyu_{xy}+(x^2+4x^4)u_{yy}=0\).

    Exercise \(\PageIndex{9}\)

    Use d’Alembert’s solution to prove

    \[f(−ζ) = f(ζ),\quad g(−ζ) = g(ζ)\nonumber\]

    for the semi-infinite string satisfying the free end condition \(u_x(0, t) = 0\).

    Exercise \(\PageIndex{10}\)

    Derive a solution similar to d’Alembert’s solution for the equation \(u_{tt} + 2u_{xt} − 3u = 0\).

    Exercise \(\PageIndex{11}\)

    Construct the appropriate periodic extension of the plucked string initial profile given by

    \[f(x)=\left\{\begin{array}{cc}x,&0\leq x\leq\frac{\ell}{2}, \\ \ell -x,&\frac{\ell}{2}\leq x\leq\ell ,\end{array}\right.\nonumber\]

    satisfying the boundary conditions at \(u(0, t) = 0\) and \(u_x(\ell, t) = 0\) for \(t > 0\).

    Exercise \(\PageIndex{12}\)

    Find and sketch the solution of the problem

    \[\begin{aligned} u_{tt}&=u_{xx},\quad 0\leq x\leq 1,\quad t> o \\ u(x,0)&=\left\{\begin{array}{rr}0,&0\leq x<\frac{1}{4}, \\ 1,&\frac{1}{4}\leq x\leq\frac{3}{4}, \\ 0,&\frac{3}{4}<x\leq 1,\end{array}\right. \\ u_t(x,0)&=0, \\ u(0,t)&=0,\quad t>0, \\ u(1,t)&=0,\quad t>0,\end{aligned}\]


    This page titled 2.8: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.