Skip to main content
Mathematics LibreTexts

2.8: Problems

  • Page ID
    90923
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\)

    Solve the following initial value problems.

    1. \(x''+x=0,\quad x(0)=2,\quad x'(0)=0\).
    2. \(y''+2y'-8y=0,\quad y(0)=1,\quad y'(0)=2\).
    3. \(x^2y''-2xy'-4y=0,\quad y(1)=1,\quad y'(1)=0\).

    Exercise \(\PageIndex{2}\)

    Solve the following boundary value problems directly, when possible.

    1. \(x''+x=2,\quad x(0)=0,\quad x'(1)=0\).
    2. \(y''+2y'-8y=0,\quad y(0)=1,\quad y(1)=0\).
    3. \(y''+y=0,\quad y(0)=1,\quad y(\pi )=0\).

    Exercise \(\PageIndex{3}\)

    Consider the boundary value problem for the deflection of a horizontal beam fixed at one end,

    \[\frac{d^4y}{dx^4}=C,\quad y(0)=0,\quad y'(0)=0,\quad y''(L)=0,\quad y'''(L)=0.\nonumber \]

    Solve this problem assuming that \(C\) is a constant.

    Exercise \(\PageIndex{4}\)

    Find the product solutions, \(u(x, t) = T(t)X(x)\), to the heat equation, \(u_t − u_{xx} = 0\), on \([0, π]\) satisfying the boundary conditions \(u_x(0, t) = 0\) and \(u(π, t) = 0\).

    Exercise \(\PageIndex{5}\)

    Find the product solutions, \(u(x, t) = T(t)X(x)\), to the wave equation \(u_{tt} = 2u_{xx}\), on \([0, 2π]\) satisfying the boundary conditions \(u(0, t) = 0\) and \(u_x(2π, t) = 0\).

    Exercise \(\PageIndex{6}\)

    Find product solutions, \(u(x, t) = X(x)Y(y)\), to Laplace’s equation, \(u_{xx} + u_{yy} = 0\), on the unit square satisfying the boundary conditions \(u(0, y) = 0\), \(u(1, y) = g(y)\), \(u(x, 0) = 0\), and \(u(x, 1) = 0\).

    Exercise \(\PageIndex{7}\)

    Consider the following boundary value problems. Determine the eigenvalues, \(λ\), and eigenfunctions, \(y(x)\) for each problem.

    1. \(y'' + λy = 0,\quad y(0) = 0,\quad y'(1) = 0\).
    2. \(y'' − λy = 0,\quad y(−π) = 0,\quad y'(π) = 0\).
    3. \(x^2y'' + xy' + λy = 0,\quad y(1) = 0,\quad y(2) = 0\).
    4. \((x^2y')'+\lambda y=0,\quad y(1)=0,\quad y'(e)=0\).

    Note

    In problem d you will not get exact eigenvalues. Show that you obtain a transcendental equation for the eigenvalues in the form \(\tan z = 2z\). Find the first three eigenvalues numerically.

    Exercise \(\PageIndex{8}\)

    Classify the following equations as either hyperbolic, parabolic, or elliptic.

    1. \(u_{yy} + u_{xy} + u_{xx} = 0\).
    2. \(3u_{xx} + 2u_{xy} + 5u_{yy} = 0\).
    3. \(x^2u_{xx}+2xyu_{xy}+y^2u_{yy}=0\).
    4. \(y^2u_{xx}+2xyu_{xy}+(x^2+4x^4)u_{yy}=0\).

    Exercise \(\PageIndex{9}\)

    Use d’Alembert’s solution to prove

    \[f(−ζ) = f(ζ),\quad g(−ζ) = g(ζ)\nonumber \]

    for the semi-infinite string satisfying the free end condition \(u_x(0, t) = 0\).

    Exercise \(\PageIndex{10}\)

    Derive a solution similar to d’Alembert’s solution for the equation \(u_{tt} + 2u_{xt} − 3u = 0\).

    Exercise \(\PageIndex{11}\)

    Construct the appropriate periodic extension of the plucked string initial profile given by

    \[f(x)=\left\{\begin{array}{cc}x,&0\leq x\leq\frac{\ell}{2}, \\ \ell -x,&\frac{\ell}{2}\leq x\leq\ell ,\end{array}\right.\nonumber \]

    satisfying the boundary conditions at \(u(0, t) = 0\) and \(u_x(\ell, t) = 0\) for \(t > 0\).

    Exercise \(\PageIndex{12}\)

    Find and sketch the solution of the problem

    \[\begin{aligned} u_{tt}&=u_{xx},\quad 0\leq x\leq 1,\quad t> o \\ u(x,0)&=\left\{\begin{array}{rr}0,&0\leq x<\frac{1}{4}, \\ 1,&\frac{1}{4}\leq x\leq\frac{3}{4}, \\ 0,&\frac{3}{4}<x\leq 1,\end{array}\right. \\ u_t(x,0)&=0, \\ u(0,t)&=0,\quad t>0, \\ u(1,t)&=0,\quad t>0,\end{aligned} \nonumber \]


    This page titled 2.8: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform.