4.3: The Eigenfunction Expansion Method
- Page ID
- 90258
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In this section we solve the nonhomogeneous problem \(\mathcal{L} y=f\) using expansions over the basis of Sturm-Liouville eigenfunctions. We have seen that Sturm-Liouville eigenvalue problems have the requisite set of orthogonal eigenfunctions. In this section we will apply the eigenfunction expansion method to solve a particular nonhomogeneous boundary value problem.
Recall that one starts with a nonhomogeneous differential equation
\[\mathcal{L} y=f,\nonumber \]
where \(y(x)\) is to satisfy given homogeneous boundary conditions. The method makes use of the eigenfunctions satisfying the eigenvalue problem
\[\mathcal{L} \phi_{n}=-\lambda_{n} \sigma \phi_{n}\nonumber \]
subject to the given boundary conditions. Then, one assumes that \(y(x)\) can be written as an expansion in the eigenfunctions,
\[y(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x),\nonumber \]
and inserts the expansion into the nonhomogeneous equation. This gives
\[f(x)=\mathcal{L}\left(\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)\right)=-\sum_{n=1}^{\infty} c_{n} \lambda_{n} \sigma(x) \phi_{n}(x) .\nonumber \]
The expansion coefficients are then found by making use of the orthogonality of the eigenfunctions. Namely, we multiply the last equation by \(\phi_{m}(x)\) and integrate. We obtain
\[\int_{a}^{b} f(x) \phi_{m}(x) d x=-\sum_{n=1}^{\infty} c_{n} \lambda_{n} \int_{a}^{b} \phi_{n}(x) \phi_{m}(x) \sigma(x) d x .\nonumber \]
Orthogonality yields
\[\int_{a}^{b} f(x) \phi_{m}(x) d x=-c_{m} \lambda_{m} \int_{a}^{b} \phi_{m}^{2}(x) \sigma(x) d x .\nonumber \]
Solving for \(c_{m}\), we have
\[c_{m}=-\frac{\int_{a}^{b} f(x) \phi_{m}(x) d x}{\lambda_{m} \int_{a}^{b} \phi_{m}^{2}(x) \sigma(x) d x} .\nonumber \]
As an example, we consider the solution of the boundary value problem
\[\begin{align} \left(x y^{\prime}\right)^{\prime}+\frac{y}{x} &=\frac{1}{x}, \quad x \in[1, e],\label{eq:1} \\ y(1) &=0=y(e) .\label{eq:2} \end{align} \]
Solution
This equation is already in self-adjoint form. So, we know that the associated Sturm-Liouville eigenvalue problem has an orthogonal set of eigenfunctions. We first determine this set. Namely, we need to solve
\[\left(x \phi^{\prime}\right)^{\prime}+\frac{\phi}{x}=-\lambda \sigma \phi, \quad \phi(1)=0=\phi(e) .\label{eq:3} \]
Rearranging the terms and multiplying by \(x\), we have that
\[x^{2} \phi^{\prime \prime}+x \phi^{\prime}+(1+\lambda \sigma x) \phi=0 .\nonumber \]
This is almost an equation of Cauchy-Euler type. Picking the weight function \(\sigma(x)=\frac{1}{x}\), we have
\[x^{2} \phi^{\prime \prime}+x \phi^{\prime}+(1+\lambda) \phi=0 .\nonumber \]
This is easily solved. The characteristic equation is
\[r^{2}+(1+\lambda)=0 .\nonumber \]
One obtains nontrivial solutions of the eigenvalue problem satisfying the boundary conditions when \(\lambda>-1\). The solutions are
\[\phi_{n}(x)=A \sin (n \pi \ln x), \quad n=1,2, \ldots\nonumber \]
where \(\lambda_{n}=n^{2} \pi^{2}-1\).
It is often useful to normalize the eigenfunctions. This means that one chooses A so that the norm of each eigenfunction is one. Thus, we have
\[\begin{align} 1 &=\int_{1}^{e} \phi_{n}(x)^{2} \sigma(x) d x\nonumber \\ &=A^{2} \int_{1}^{e} \sin (n \pi \ln x) \frac{1}{x} d x\nonumber \\ &=A^{2} \int_{0}^{1} \sin (n \pi y) d y=\frac{1}{2} A^{2} .\label{eq:4} \end{align} \]
Thus, \(A=\sqrt{2}\). Several of these eigenfunctions are show in Figure \(\PageIndex{1}\).
We now turn towards solving the nonhomogeneous problem, \(\mathcal{L} y=\frac{1}{x}\). We first expand the unknown solution in terms of the eigenfunctions,
\[y(x)=\sum_{n=1}^{\infty} c_{n} \sqrt{2} \sin (n \pi \ln x) .\nonumber \]
Inserting this solution into the differential equation, we have
\[\frac{1}{x}=\mathcal{L} y=-\sum_{n=1}^{\infty} c_{n} \lambda_{n} \sqrt{2} \sin (n \pi \ln x) \frac{1}{x} .\nonumber \]
Next, we make use of orthogonality. Multiplying both sides by the eigenfunction \(\phi_{m}(x)=\sqrt{2} \sin (m \pi \ln x)\) and integrating, gives
\[\lambda_{m} c_{m}=\int_{1}^{e} \sqrt{2} \sin (m \pi \ln x) \frac{1}{x} d x=\frac{\sqrt{2}}{m \pi}\left[(-1)^{m}-1\right] .\nonumber \]
Solving for \(c_{m}\), we have
\[c_{m}=\frac{\sqrt{2}}{m \pi} \frac{\left[(-1)^{m}-1\right]}{m^{2} \pi^{2}-1} .\nonumber \]
Finally, we insert these coefficients into the expansion for \(y(x)\). The solution is then
\[y(x)=\sum_{n=1}^{\infty} \frac{2}{n \pi} \frac{\left[(-1)^{n}-1\right]}{n^{2} \pi^{2}-1} \sin (n \pi \ln (x)) .\nonumber \]
We plot this solution in Figure \(\PageIndex{2}\).