9.2: Complex Exponential Fourier Series
- Page ID
- 90277
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Before deriving the Fourier transform, we will need to rewrite the trigonometric Fourier series representation as a complex exponential Fourier series. We first recall from Chapter ?? the trigonometric Fourier series representation of a function defined on \([-\pi, \pi]\) with period \(2 \pi\). The Fourier series is given by
\[f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right),\label{eq:1} \]
where the Fourier coefficients were found as
\[\begin{align} &a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad n=0,1, \ldots,\nonumber \\ &b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x, \quad n=1,2, \ldots\label{eq:2} \end{align} \]
In order to derive the exponential Fourier series, we replace the trigonometric functions with exponential functions and collect like exponential terms. This gives
\[\begin{align} f(x) & \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n}\left(\frac{e^{i n x}+e^{-i n x}}{2}\right)+b_{n}\left(\frac{e^{i n x}-e^{-i n x}}{2 i}\right)\right]\nonumber \\ &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(\frac{a_{n}-i b_{n}}{2}\right) e^{i n x}+\sum_{n=1}^{\infty}\left(\frac{a_{n}+i b_{n}}{2}\right) e^{-i n x} .\label{eq:3} \end{align} \]
The coefficients of the complex exponentials can be rewritten by defining
\[c_{n}=\frac{1}{2}\left(a_{n}+i b_{n}\right), \quad n=1,2, \ldots .\label{eq:4} \]
This implies that
\[\bar{c}_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right), \quad n=1,2, \ldots\label{eq:5} \]
So far the representation is rewritten as
\[f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} \bar{c}_{n} e^{i n x}+\sum_{n=1}^{\infty} c_{n} e^{-i n x} .\nonumber \]
Re-indexing the first sum, by introducing \(k=-n\), we can write
\[f(x) \sim \frac{a_{0}}{2}+\sum_{k=-1}^{-\infty} \bar{c}_{-k} e^{-i k x}+\sum_{n=1}^{\infty} c_{n} e^{-i n x}\nonumber \]
Since \(k\) is a dummy index, we replace it with a new \(n\) as
\[f(x) \sim \frac{a_{0}}{2}+\sum_{n=-1}^{-\infty} \bar{c}_{-n} e^{-i n x}+\sum_{n=1}^{\infty} c_{n} e^{-i n x} .\nonumber \]
We can now combine all of the terms into a simple sum. We first define \(c_{n}\) for negative \(n^{\prime}\)s by
\[c_{n}=\bar{c}_{-n}, \quad n=-1,-2, \ldots\nonumber \]
Letting \(c_{0}=\frac{a_{0}}{2}\), we can write the complex exponential Fourier series representation as
\[f(x) \sim \sum_{n=-\infty}^{\infty} c_{n} e^{-i n x},\label{eq:6} \]
where
\[\begin{align} &c_{n}=\frac{1}{2}\left(a_{n}+i b_{n}\right), \quad n=1,2, \ldots\nonumber \\ &c_{n}=\frac{1}{2}\left(a_{-n}-i b_{-n}\right), \quad n=-1,-2, \ldots\nonumber \\ &c_{0}=\frac{a_{0}}{2}\label{eq:7} \end{align} \]
Given such a representation, we would like to write out the integral forms of the coefficients, \(c_{n}\). So, we replace the \(a_{n}\) ’s and \(b_{n}\) ’s with their integral representations and replace the trigonometric functions with complex exponential functions. Doing this, we have for \(n=1,2, \ldots\).
\[\begin{align} c_{n} &=\frac{1}{2}\left(a_{n}+i b_{n}\right)\nonumber \\ &=\frac{1}{2}\left[\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x+\frac{i}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x\right]\nonumber \\ &=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x)\left(\frac{e^{i n x}+e^{-i n x}}{2}\right) d x+\frac{i}{2 \pi} \int_{-\pi}^{\pi} f(x)\left(\frac{e^{i n x}-e^{-i n x}}{2 i}\right) d x\nonumber \\ &=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{i n x} d x .\label{eq:8} \end{align} \]
It is a simple matter to determine the \(c_{n}\) ’s for other values of \(n\). For \(n=0\), we have that
\[c_{0}=\frac{a_{0}}{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x .\nonumber \]
For \(n=-1,-2, \ldots\), we find that
\[c_{n}=\bar{c}_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{e^{-i n x}} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{i n x} d x .\nonumber \]
Therefore, we have obtained the complex exponential Fourier series coefficients for all \(n\). Now we can define the complex exponential Fourier series for the function \(f(x)\) defined on \([-\pi, \pi]\) as shown below.
\[f(x) \sim \sum_{n=-\infty}^{\infty} c_{n} e^{-i n x},\label{eq:9} \]
\[c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{i n x} d x .\label{eq:10} \]
We can easily extend the above analysis to other intervals. For example, for \(x \in[-L, L]\) the Fourier trigonometric series is
\[f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right)\nonumber \]
with Fourier coefficients
\[\begin{aligned} &a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n=0,1, \ldots, \\ &b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x, \quad n=1,2, \ldots . \end{aligned} \nonumber \]
This can be rewritten as an exponential Fourier series of the form
We can now use this complex exponential Fourier series for function defined on \([-L, L]\) to derive the Fourier transform by letting \(L\) get large. This will lead to a sum over a continuous set of frequencies, as opposed to the sum over discrete frequencies, which Fourier series represent.