Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

6.4: Ptolemy's inequality

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    A quadrangle is defined as an ordered quadruple of distinct points in the plane. These 4 points are called vertexes of quadrangle. The quadrangle ABCD will be also denoted by \(\square ABCD\).

    Given a quadrangle \(ABCD\), the four segments \([AB]\), \([BC]\), \([CD]\), and \([DA]\) are called sides of \(\square ABCD\); the remaining two segments \([AC]\) and \([BD]\) are called diagonals of \(\square ABCD\).

    Theorem \(\PageIndex{1}\) Ptolemy's inequality

    In any quadrangle, the product of diagonals cannot exceed the sum of the products of its opposite sides; that is,

    \[AC \cdot BD \le AB \cdot CD + BC \cdot DA\]

    for any \(\square ABCD\).

    We will present a classical proof of this inequality using the method of similar triangles with an additional construction. This proof is given as an illustration — it will not be used further in the sequel.


    截屏2021-02-09 上午9.05.34.png

    Consider the half-line \([AX)\) such that \(\measuredangle BAX = \measuredangle CAD\). In this case \(\measuredangle XAD = \measuredangle BAC\) since adding \(\measuredangle BAX\) or \(\measuredangle CAD\) to the corresponding sides produces \(\measuredangle BAD\). We can assume that

    \(AX = \dfrac{AB}{AC} \cdot AD.\)

    In this case we have

    \(\dfrac{AX}{AD} = \dfrac{AB}{AC}\),                    \(\dfrac{AX}{AB} = \dfrac{AD}{AC}.\)


    \(\triangle BAX \sim \triangle CAD\),                    \(\triangle XAD \sim \triangle BAC\).


    \(\dfrac{BX}{CD} = \dfrac{AB}{AC}\),                    \(\dfrac{XD}{BC} = \dfrac{AD}{AC}.\)

    or, equivalently

    \(AC \cdot BX = AB \cdot CD\),                   \(AC \cdot XD = BC \cdot AD\).

    Adding these two equalities we get

    \(AC \cdot (BX + XD) = AB \cdot CD + BC \cdot AD\).

    It remains to apply the triangle inequality, \(BD \le BX + XD\).


    Using the proof above together with Corollary 9.3.2, one can show that the equality holds only if the vertexes \(A, B, C\), and \(D\) appear on a line or a circle in the same cyclic order; see also Theorem 10.4.1 for another proof of the equality case. Exercise 18.3.2 below suggests another proof of Ptolemy’s inequality using complex coordinates.