# 11.3: Three angles of triangle

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Proposition $$\PageIndex{1}$$

Let $$\triangle ABC$$ and $$\triangle A'B'C'$$ be two triangles in the neutral plane such that $$AC = A'C'$$ and $$BC = B'C'$$. Then

$$AB < A'B'$$ if and only if $$|\measuredangle ACB| < |\measuredangle A'C'B'|$$.

Proof

Without loss of generality, we may assume that $$A = A'$$, $$C = C'$$, and $$\measuredangle ACB$$, $$\measuredangle ACB' \ge 0$$. In this case we need to show that

$$AB < AB' \Leftrightarrow \measuredangle ACB < \measuredangle ACB'.$$

Choose a point $$X$$ so that

$$\measuredangle ACX = \dfrac{1}{2} \cdot (\measuredangle ACB + \measuredangle ACB').$$

Note that

• $$(CX)$$ bisects $$\angle BCB'$$.
• $$(CX)$$ is the perpendicular bisector of $$[BB']$$.
• $$A$$ and $$B$$ lie on the same side of $$(CX)$$ if and only if

$$\measuredangle ACB < \measuredangle ACB'$$.

From Exercise 5.2.1, $$A$$ and $$B$$ lie on the same side of $$(CX)$$ if and only if $$AB < AB'$$. Hence the result.

## Theorem $$\PageIndex{1}$$

Let $$\triangle ABC$$ be a triangle in the neutral plane. Then

$$|\measuredangle ABC| + |\measuredangle BCA| + |\measuredangle CAB| \le \pi.$$

The following proof is due to Legendre [12], earler proofs were due to Saccheri [16] and Lambert [11].

Proof

Set

$$\begin{array} {rclcrclcrcl} {a} & = & {BC,} & \ \ \ \ \ & {b} & = & {CA,} & \ \ \ \ \ & {c} & = & {AB,} \\ {\alpha} & = & {\measuredangle CAB,} & \ \ \ \ \ & {\beta} & = & {\measuredangle ABC,} & \ \ \ \ \ & {\gamma} & = & {\measuredangle BCA.} \end{array}$$

Without loss of generality, we may assume that $$\alpha, \beta, \gamma \ge 0$$.

Fix a positive integer $$n$$. Consider the points $$A_0, A_1, ..., A_n$$ on the half-line $$[BA)$$, such that $$BA_i = i \cdot c$$ for each $$i$$. (In particular, $$A_0 = B$$ and $$A_1 = A$$.) Let us construct the points $$C_1, C_2, ..., C_n$$, so that $$\measuredangle A_iA_{i-1}C_i = \beta$$ and $$A_{i-1} C_i = a$$ for each $$i$$.

By SAS, we have constructed n congruent triangles

$$\triangle ABC = \triangle A_1A_0C_1 \cong \triangle A_2A_1C_2 \cong ... \cong \triangle A_nA_{n-1} C_n.$$

Set $$d = C_1C_2$$ and $$\delta = \measuredangle C_2A_1C_1$$. Note that

$\alpha + \beta + \delta = \pi.$

By Proposition 11.2.1, we get that $$\Delta \ge 0$$.

By construction

$$\triangle A_1C_1C_2 \cong \triangle A_2C_2C_3 \cong ... \cong \triangle A_{n - 1} C_{n - 1} C_n.$$

In particular, $$C_i C_{i + 1} = d$$ for each $$i$$.

By repeated application of the triangle inequality, we get that

$$\begin{array} {rcl} {n \cdot c} & = & {A_0A_n \le} \\ {} & \le & {A_0 C_1 + C_1 C_2 + \cdots + C_{n - 1} C_n + C_n A_n =} \\ {} & = & {a + (n - 1) \cdot d + b.} \end{array}$$

In particular,

$$c \le d + \dfrac{1}{n} \cdot (a + b - d).$$

Since $$n$$ is arbitrary positive integer, the latter implies $$c \le d$$. By Proposition $$\PageIndex{1}$$, it is equivalent to

$$\gamma \le \delta.$$

From 11.3.1, the theorem follows.

## Exercise $$\PageIndex{1}$$

Let $$ABCD$$ be a quadrangle in the neutral plane. Suppose that the angles $$DAB$$ and $$ABC$$ are right. Show that $$AB \le CD$$.

Hint

Set $$a = AB, b = BC, c = CD$$, and $$d = DA$$; we nned to show that $$c \ge a$$.

Mimic the proof of Theorem $$\PageIndex{1}$$ for the shown fence made from copies of quadrangle $$ABCD$$.

This page titled 11.3: Three angles of triangle is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Anton Petrunin via source content that was edited to the style and standards of the LibreTexts platform.