# 13.5: Conformal interpretation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Let us give another interpretation of the h-distance.

## Lemma $$\PageIndex{1}$$

Consider the h-plane with the unit circle centered at $$O$$ as the absolute. Fix a point $$P$$ and let $$Q$$ be another point in the h-plane. Set $$x = PQ$$ and $$y = PQ_h$$. Then

$\lim_{x\to 0} \dfrac{y}{x} = \dfrac{2}{1-OP^2}.$

The above formula tells us that the h-distance from $$P$$ to a nearby point $$Q$$ is almost proportional to the Euclidean distance with the coefficient $$\dfrac{2}{1-OP^2}$$. The value $$\lambda(P)=\dfrac{2}{1-OP^2}$$ is called the conformal factor of the h-metric.

The value $$\dfrac{1}{\lambda(P)}=\dfrac{1}{2} \cdot (1-OP^2)$$ can be interpreted as the speed limit at the given point $$P$$. In this case the h-distance is the minimal time needed to travel from one point of the h-plane to another point.

Proof

If $$P=O$$, then according to Lemma 12.3.2

$\dfrac{y}{x}=\dfrac{\ln \dfrac{1+x}{1-x}}{x}\to 2$

as $$x\to0$$.

If $$P\ne O$$, let $$Z$$ denotes the inverse of $$P$$ in the absolute. Suppose that $$\Gamma$$ denotes the circle with the center $$Z$$ perpendicular to the absolute.

According to the main observation (Theorem 12.3.1) and Lemma 12.3.1, the inversion in $$\Gamma$$ is a motion of the h-plane which sends $$P$$ to $$O$$. In particular, if $$Q'$$ denotes the inverse of $$Q$$ in $$\Gamma$$, then $$OQ'_h=PQ_h$$.

Set $$x'=OQ'$$. According to Lemma 10.1.1,

$$\dfrac{x'}{x}=\dfrac{OZ}{ZQ}.$$

Since $$Z$$ is the inverse of $$P$$ in the absolute, we have that $$PO\cdot OZ=1$$. Therefore,

as $$x \to 0$$.

According to 13.5.1, $$\dfrac{y}{x'} \to 2$$ as $$x' \to 0$$. Therefore

as $$x \to 0$$.

Here is an application of the lemma above.

## Proposition $$\PageIndex{1}$$

The circumference of an h-circle of the h-radius $$r$$ is

$$2 \cdot \pi \cdot \sinh r,$$

where $$\sinh r$$ denotes the hyperbolic sine of $$r$$; that is,

$$\sinh r := \dfrac{e^r-e^{-r}}{2}.$$

Before we proceed with the proof, let us discuss the same problem in the Euclidean plane.

The circumference of a circle in the Euclidean plane can be defined as the limit of perimeters of regular $$n$$-gons inscribed in the circle as $$n \to \infty$$.

Namely, let us fix $$r>0$$. Given a positive integer $$n$$, consider $$\triangle AOB$$ such that $$\measuredangle AOB=\dfrac{2\cdot\pi}{n}$$ and $$OA=OB=r$$. Set $$x_n=AB$$. Note that $$x_n$$ is the side of a regular $$n$$-gon inscribed in the circle of radius $$r$$. Therefore, the perimeter of the $$n$$-gon is $$n\cdot x_n$$.

The circumference of the circle with the radius $$r$$ might be defined as the limit

$\lim_{n\to\infty} n\cdot x_n=2\cdot\pi\cdot r.$

(This limit can be taken as the definition of $$\pi$$.)

In the following proof, we repeat the same construction in the h-plane.

Proof

Without loss of generality, we can assume that the center $$O$$ of the circle is the center of the absolute.

By Lemma 12.3.2, the h-circle with the h-radius $$r$$ is the Euclidean circle with the center $$O$$ and the radius

$$a=\dfrac{e^r-1}{e^r+1}.$$

Let $$x_n$$ and $$y_n$$ denote the side lengths of the regular $$n$$-gons inscribed in the circle in the Euclidean and hyperbolic plane respectively.

Note that $$x_n\to0$$ as $$n\to\infty$$. By Lemma $$\PageIndecx{1}$$,

$$\lim_{n\to\infty} \dfrac{y_n}{x_n} = \dfrac{2}{1-a^2}.$$

Applying 13.5.2, we get that the circumference of the h-circle can be found the following way:

$$\begin{array} {rcl} {\lim_{n \to \infty} n \cdot y_n} & = & {\dfrac{2}{1 - a^2} \cdot \lim_{n \to \infty} n \cdot x_n =} \\ {} & = & {\dfrac{4 \cdot \pi \cdot a}{1 - a^2} =} \\ {} & = & {\dfrac{4 \cdot \pi \cdot (\dfrac{e^r - 1}{e^r + 1})}{1 - (\dfrac{e^r - 1}{e^r + 1})^2} =} \\ {} & = & {2 \cdot \pi \cdot \dfrac{e^r - e^{-r}}{2} =} \\ {} & = & {2 \cdot \pi \cdot \sinh r.} \end{array}$$

## Exercise $$\PageIndex{1}$$

Let $$\circum_h(r)$$ denote the circumference of the h-circle of the h-radius $$r$$. Show that

$$\\text{circum}_h(r+1)>2\cdot \text{circum}_h(r)\]) for all \(r>0$$.

Hint

Apply Proposition $$\PageIndex{1}$$. Use that $$e > 2$$ and in particular the function $$r \mapsto e^{-r}$$ is decreasing.

This page titled 13.5: Conformal interpretation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Anton Petrunin via source content that was edited to the style and standards of the LibreTexts platform.