2.3: Division and Angle Measure
- Page ID
- 23303
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The division of the complex number \(z\) by \(w \neq 0\text{,}\) denoted \(\dfrac{z}{w}\text{,}\) is the complex number \(u\) that satisfies the equation \(z = w \cdot u\text{.}\)
For instance, \(\dfrac{1}{i} = -i\) because \(1 = i \cdot (-i)\text{.}\)
In practice, division of complex numbers is not a guessing game, but can be done by multiplying the top and bottom of the quotient by the conjugate of the bottom expression.
We convert the following quotient to Cartesian form:
\( \begin{array} z \dfrac{2+i}{3+2i} &= \dfrac{2+i}{3+2i}\cdot\dfrac{3-2i}{3-2i}\\ &= \dfrac{(6+2)+(-4+3)i}{9+4}\\ &= \dfrac{8-i}{13}\\ &= \dfrac{8}{13} - \dfrac{1}{13}i\text{.} \end{array} \)
Suppose we wish to find \(z/w\) where \(z = re^{i\theta}\) and \(w = se^{i\beta} \neq 0\text{.}\) The reader can check that
\[ \dfrac{1}{w} = \dfrac{1}{s}e^{-i\beta}\text{.} \]
Then we may apply Theorem 2.2.1 to obtain the following result:
So,
\[ \arg\bigg(\frac{z}{w}\bigg)=\arg(z)-\arg(w) \]
where equality is taken modulo \(2\pi\text{.}\)
Thus, when dividing by complex numbers, we can first convert to polar form if it is convenient. For instance,
\[ \dfrac{1+i}{-3 + 3i} =\dfrac{\sqrt{2}e^{i\pi/4}}{\sqrt{18}e^{i3\pi/4}} = \dfrac{1}{3}e^{-i\pi/2} = -\dfrac{1}{3} i\text{.} \]
Angle Measure
Given two rays \(L_1\) and \(L_2\) having common initial point, we let \(\angle(L_1,L_2)\) denote the angle between rays \(L_1\) and \(L_2\), measured from \(L_1\) to \(L_2\text{.}\) We may rotate ray \(L_1\) onto ray \(L_2\) in either a counterclockwise direction or a clockwise direction. We adopt the convention that angles measured counterclockwise are positive, and angles measured clockwise are negative, and admit that angles are only well-defined up to multiples of \(2\pi\text{.}\) Notice that
\[ \angle(L_1,L_2) = - \angle(L_2,L_1)\text{.} \]
To compute \(\angle(L_1,L_2)\) where \(z_0\) is the common initial point of the rays, let \(z_1\) be any point on \(L_1\text{,}\) and \(z_2\) any point on \(L_2\text{.}\) Then
\(\begin{array} \angle(L_1,L_2) & = \arg\bigg(\dfrac{z_2-z_0}{z_1-z_0}\bigg) \notag\\ &= \arg(z_2-z_0)-\arg(z_1-z_0)\text{.} \end{array}\)
Suppose \(L_1\) and \(L_2\) are rays emanating from \(2+2i\text{.}\) Ray \(L_1\) proceeds along the line \(y=x\) and \(L_2\) proceeds along \(y = 3-x/2\) as pictured.
To compute the angle \(\theta\) in the diagram, we choose \(z_1 = 3+3i\) and \(z_2 = 4+i\text{.}\) Then
\[ \angle(L_1,L_2) = \arg(2-i)-\arg(1+i) = -\tan^{-1}(1/2) - \pi/4 \approx -71.6^\circ\text{.} \]
That is, the angle from \(L_1\) to \(L_2\) is \(71.6^{\circ}\) in the clockwise direction.
If \(u,v,\) and \(w\) are three complex numbers, let \(\angle uvw\) denote the angle \(\theta\) from ray \(\overrightarrow{vu}\) to \(\overrightarrow{vw}\text{.}\) In particular,
\[ \angle uvw = \theta = \arg\bigg(\dfrac{w-v}{u-v}\bigg)\text{.} \]
For instance, if \(u = 1\) on the positive real axis, \(v= 0\) is the origin in \(\mathbb{C}\text{,}\) and \(z\) is any point in \(\mathbb{C}\text{,}\) then \(\angle uvz = \arg(z)\text{.}\)
Exercises
Express \(\frac{1}{x+yi}\) in the form \(a + bi\text{.}\)
Express these fractions in Cartesian form or polar form, whichever seems more convenient.
\[ \dfrac{1}{2i},\;\; \dfrac{1}{1+i},\;\; \dfrac{4+i}{1-2i},\;\; \dfrac{2}{3+i}\text{.} \]
Prove that \(\displaystyle|z/w| = |z|/|w|\text{,}\) and that \(\displaystyle\overline{z/w} = \overline{z}/\overline{w}\text{.}\)
Suppose \(z = re^{i\theta}\) and \(w = se^{i\alpha}\) are as shown below. Let \(u = z\cdot w\text{.}\) Prove that \(\Delta 01z\) and \(\Delta 0wu\) are similar triangles.
Determine the angle \(\angle uvw\) where \(u = 2 + i\text{,}\) \(v = 1 + 2i\text{,}\) and \(w = -1 + i\text{.}\)
Suppose \(z\) is a point with positive imaginary component on the unit circle shown below, \(a = 1\) and \(b = -1\text{.}\) Use the angle formula to prove that angle \(\angle b z a = \dfrac{\pi}{2} \text{.}\)