Skip to main content
Mathematics LibreTexts

9.2: Gram-Schmidt Orthogonalization

  • Page ID
    21855
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Suppose that \(M\) is an \(m\)-dimensional subspace with basis

    \[\{x_{1}, \cdots, x_{m}\} \nonumber\]

    We transform this into an orthonormal basis

    \[\{q_{1}, \cdots, q_{m}\} \nonumber\]

    for \(M\) via

    1. Set \(y_{1} = x_{1}\) and \(q_{1} = \frac{y_{1}}{||y_{1}||}\)

    2. \(y_{2} = x_{2}\) minus the projection of \(x_{2}\) onto the line spanned by \(q_{1}\).

    That is,\[y_{2} = x_{2}-q_{1}(q_{1}^{T}q_{1})^{-1}q_{1}^{T}x_{2} = x_{2}-q_{1}q_{1}^{T}x_{2} \nonumber\]

    Set \(q_{2} = \frac{y_{2}}{||y_{2}||}\) and \(Q_{2} = \{q_{1}, q_{2}\}\)

    3. \(y_{3} = x_{3}\) minus the projection of \(x_{3}\) onto the plane spanned by \(q_{1}\) and \(q_{2}\). That is,

    \[y_{3} = x_{3}-Q_{2}(Q_{2}^{T}Q_{2})^{-1}Q_{2}^{T} x_{3} = x_{3}-q_{1}q_{1}^{T}x_{3} \nonumber\]

    Set \(q_{3} = \frac{y_{3}}{||y_{3}||}\) and \(Q_{3} = \{q_{1}, q_{2}, q_{3}\}\). Continue in this fashion through step (m)

    • (m) \(y_{m} = x_{m}\) minus its projection onto the subspace spanned by the columns of \(Q_{m-1}\)

    \[y_{m} = x_{m}-Q_{m-1}(Q_{m-1}^{T}Q_{m-1})^{-1}Q_{m-1}^{T} x_{m}x_{m}- \sum_{j=1}^{m-1} q_{j}q_{j}^{T} x_{m} \nonumber\]

    Set \(q_{m} = \frac{y_{m}}{||y_{m}||}\). To take a simple example, let us orthogonalize the following basis for \(\mathbb{R}^3\)

    \[\begin{array}{ccc} {x_{1} = \begin{pmatrix} {1}\\{0}\\{0} \end{pmatrix}}&{x_{2} = \begin{pmatrix} {1}\\{1}\\{0} \end{pmatrix}}&{x_{3} = \begin{pmatrix} {1}\\{1}\\{1} \end{pmatrix}} \end{array} \nonumber\]

    1. \(q_{1} = y_{1} = x_{1}\)
    2. \(y_{2} = x_{2}-q_{1}q_{1}^{T}x_{2} = \begin{pmatrix} {0}&{1}&{0} \end{pmatrix}^T\) and so, \(q_{2} = y_{2}\)
    3. \(y_{3} = x_{3}-q_{2}q_{2}^{T}x_{3} = \begin{pmatrix} {0}&{0}&{1} \end{pmatrix}^T\) and so, \(q_{3} = y_{3}\)

    We have arrived at

    \[\begin{array}{ccc} {q_{1} = \begin{pmatrix} {1}\\{0}\\{0} \end{pmatrix}}&{q_{2} = \begin{pmatrix} {0}\\{1}\\{0} \end{pmatrix}}&{q_{3} = \begin{pmatrix} {0}\\{0}\\{1} \end{pmatrix}} \end{array} \nonumber\]

    Once the idea is grasped the actual calculations are best left to a machine. Matlab accomplishes this via the orth command. Its implementation is a bit more sophisticated than a blind run through our steps (1) through (m). As a result, there is no guarantee that it will return the same basis. For example

    >>X=[1 1 1;0 1 1 ;0 0 1];
    
    >>Q=orth(X)
    
    Q=
    
      0.7370  -0.5910  0.3280
    
      0.5910   0.3280 -0.7370
    
      0.3280   0.7370  0.5910

    This ambiguity does not bother us, for one orthogonal basis is as good as another. Let us put this into practice, via (10.8).


    This page titled 9.2: Gram-Schmidt Orthogonalization is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.