Skip to main content
Mathematics LibreTexts

3.E: Exercises for Chapter 3

  • Page ID
    303
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Calculational Exercises

    1. Let \(n \in \mathbb{Z}_+\) be a positive integer, let \(w_0 , w_1 ,\ldots, w_n \in \mathbb{C}\) be distinct complex numbers, and let \(z_0 , z_1 ,\ldots, z_n \in \mathbb{C}\) be any complex numbers. Then one can prove that there is a unique polynomial \(p(z)\) of degree at most \(n\) such that, for each \(k \in \{0, 1, . . . , n\}, p(w_k ) = z_k.\)

    (a) Find the unique polynomial of degree at most \(2\) that satisfies \(p(0) = 0, p(1) = 1,\) and \(p(2) = 2.\)

    (b) Can your result in Part (a) be easily generalized to find the unique polynomial of degree at most \(n\) satisfying \(p(0) = 0, p(1) = 1, \ldots , p(n) = n\)?

    2. Given any complex number \(\alpha \in \mathbb{C},\) show that the coefficients of the polynomial

    \[(z − \alpha)(z − \bar{\alpha})\]

    are real numbers.

    Proof-Writing Exercises

    1. Let \(m, n \in \mathbb{Z}_+\) be positive integers with \(m \leq n\). Prove that there is a degree n polynomial \(p(z)\) with complex coefficients such that \(p(z)\) has exactly m distinct roots.

    2. Given a polynomial \(p(z) = a_n z^n + \cdots + a_1 z + a_0\) with complex coefficients, define the conjugate of \(p(z)\) to be the new polynomial

    \[ \bar{p}(z) = \bar{a_n} z^n + \cdots + \bar{a_1}z + a_0. \]

    (a) Prove that \(\bar{p(z)} = \bar{p}(\bar{z}).\)
    (b) Prove that \(p(z)\) has real coefficients if and only if \(\bar{p}(z) = p(z).\)
    (c) Given polynomials \(p(z), q(z),\) and \(r(z)\) such that \(p(z) = q(z)r(z),\) prove that \(\bar{p}(z) = \bar{q}(z)\bar{r}(z).\)

    3. Let \(p(z)\) be a polynomial with real coefficients, and let \( \alpha \in \mathbb{C}\) be a complex number.
    Prove that \(p(\alpha) = 0\) if and only \(p(\bar{\alpha}) = 0.\)


    This page titled 3.E: Exercises for Chapter 3 is shared under a not declared license and was authored, remixed, and/or curated by Isaiah Lankham, Bruno Nachtergaele, & Anne Schilling.

    • Was this article helpful?