$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 9.2: Norms

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

The norm of a vector in an arbitrary inner product space is the analog of the length or magnitude of a vector in $$\mathbb{R}^{n}$$. We formally define this concept as follows.

Definition 9.2.1. Let $$V$$ be a vector space over $$\mathbb{F}$$. A map
\begin{equation*}
\begin{split}
\norm{\cdot} : V &\to \mathbb{R}\\
v &\mapsto \norm{v}
\end{split}
\end{equation*}
is a norm on $$V$$ if the following three conditions are satisfied.

1. Positive definiteness: $$\norm{v}=0$$ if and only if $$v=0$$;
2. Positive Homogeneity: $$\norm{av}=|a|\,\norm{v}$$ for all $$a\in \mathbb{F}$$ and $$v\in V$$;
3. Triangle inequality: $$\norm{v+w}\le \norm{v}+\norm{w}$$ for all $$v,w\in V$$.

Remark 9.2.2. Note that, in fact, $$\norm{v}\ge 0$$ for each $$v\in V$$ since

$0 = \norm{v-v} \le \norm{v} + \norm{-v} = 2\norm{v}.$

Next we want to show that a norm can always be defined from an inner product $$\inner{\cdot}{\cdot}$$ via the formula

$\norm{v} = \sqrt{\inner{v}{v}} ~\text{for all} ~ v \in V . \tag{9.2.1}$

Properties 1 and 2 follow easily from Conditions~1 and 3 of Definition~9.1.1. The triangle inequality requires more careful proof, though, which we give in Theorem~9.3.4\ref{thm:triangle} in the next chapter.

If we take $$V=\mathbb{R}^n$$, then the norm defined by the usual dot product is related to the usual notion of length of a vector. Namely, for $$v=(x_1,\ldots,x_n)\in \mathbb{R}^n$$, we have
\label{eqn:NormInRn}
\norm{v} = \sqrt{x_1^2+\cdots + x_n^2}. \tag{9.2.2}

We illustrate this for the case of $$\mathbb{R^3}$$ in Figure 9.2.1.

Figure 9.2.1: The length of a vector in $$\mathbb{R^3}$$ via equation 9.2.1.

While it is always possible to start with an inner product and use it to define a norm, the converse requires more care. In particular, one can prove that a norm can be used to define an inner product via Equation 9.2.1 if and only if the norm satisfies the Parallelogram Law (Theorem 9.3.6~\ref{thm:ParallelogramLaw}).

## Contributors

Both hardbound and softbound versions of this textbook are available online at WorldScientific.com.