Skip to main content
Mathematics LibreTexts

10.E: Exercises for Chapter 10

  • Page ID
    249
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Calculational Exercises

    1. Consider \(\mathbb{R}^3 \) with two orthonormal bases: the canonical basis \(e = (e_1 , e_2 , e_3 )\) and the basis \(f = (f_1 , f_2 , f_3)\), where

    \[ f_1 = \frac{1}{\sqrt{3}}(1,1,1), f_2 = \frac{1}{\sqrt{6}}(1,-2,1), f_3 = \frac{1}{\sqrt{2}}(1,0,-1) \]

    Find the matrix, \(S\), of the change of basis transformation such that
    \[ [v]_f = S[v]_e, ~\rm{for~ all}~ v \in \mathbb{R}^3 ,\]

    where \([v]_b\) denotes the column vector of \(v\) with respect to the basis \(b\).

    2. Let \(v \in \mathbb{C}^4\) be the vector given by \(v = (1, i, −1, −i)\). Find the matrix (with respect to the canonical basis on \(\mathbb{C}^4\) ) of the orthogonal projection \(P \in \cal{L}(\mathbb{C}^4)\) such that

    \[null(P ) = {v}^\perp.\]

    3. Let \(U\) be the subspace of \(\mathbb{R}^3\) that coincides with the plane through the origin that is perpendicular to the vector \(n = (1, 1, 1) \in \mathbb{R}^3.\)

    (a) Find an orthonormal basis for \(U\).

    (b) Find the matrix (with respect to the canonical basis on \(\mathbb{R}^3\)) of the orthogonal projection \(P \in \cal{L}(\mathbb{R}^3\)) onto \(U\), i.e., such that \(range(P ) = U\).

    4. Let \(V = \mathbb{C}^4\) with its standard inner product. For \( \theta \in \mathbb{R}\), let

    \[ v_\theta = \left( \begin{array}{c} 1 \\ e^{i\theta} \\ e^{2i\theta} \\ e^{3i\theta} \end{array} \right) \in \mathbb{C}^4.\]

    Find the canonical matrix of the orthogonal projection onto the subspace \({v_\theta }^\perp\).

    Proof-Writing Exercises

    1. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F}\) with dimension \(n \in \mathbb{Z}_+ \), and suppose that \(b = (v_1 , v_2 , \ldots , v_n) \) is a basis for \(V\) . Prove that the coordinate vectors \([v_1 ]_b, [v_2 ]_b, \ldots, [v_n ]_b\) with respect to \(b\) form a basis for \(\mathbb{F}^n.\)

    2. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F}\), and suppose that \(T \in \cal{L}(V)\) is a linear operator having the following property: Given any two bases \(b\) and \(c\) for \(V\) , the matrix \(M(T, b)\) for \(T\) with respect to \(b\) is the same as the matrix \(M(T, c)\) for \(T\) with respect to \(c\). Prove that there exists a scalar \(\alpha \in \mathbb{F}\) such that \(T = \alpha I_V\), where \(I_V\) denotes the identity map on \(V\).


    This page titled 10.E: Exercises for Chapter 10 is shared under a not declared license and was authored, remixed, and/or curated by Isaiah Lankham, Bruno Nachtergaele, & Anne Schilling.