6.5: The dimension formula
- Page ID
- 275
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The next theorem is the key result of this chapter. It relates the dimension of the kernel and range of a linear map.
Theorem 6.5.1. Let \(V \) be a finite-dimensional vector space and \(T:V\to W \) be a linear map. Then \(\range(T) \) is a finite-dimensional subspace of \(W \) and
\[ \begin{equation} \label{eq:dim formula}
\dim(V) = \dim(\kernel(T)) + \dim(\range(T)). \tag{6.5.1}
\end{equation}\]
Proof.
Let \(V \) be a finite-dimensional vector space and \(T\in \mathcal{L}(V,W) \). Since \(\kernel(T) \) is a subspace of \(V \), we know that \( \kernel(T) \) has a basis \((u_1,\ldots, u_m) \). This implies that \(\dim(\kernel(T))=m \). By the Basis Extension Theorem, it follows that \( (u_1,\ldots,u_m) \) can be extended to a basis of \(V \), say \((u_1,\ldots,u_m,v_1,\ldots,v_n) \), so that \(\dim(V)=m+n \).
The theorem will follow by showing that \((Tv_1,\ldots, Tv_n) \) is a basis of \(\range(T) \) since this would imply that \(\range(T) \) is finite-dimensional and \(\dim(\range(T))=n \), proving Equation 6.5.1.
Since \((u_1,\ldots,u_m,v_1,\ldots,v_n) \) spans \(V \), every \(v\in V \) can be written as a linear combination of these vectors; i.e.,
\begin{equation*}
v = a_1 u_1 + \cdots + a_m u_m + b_1 v_1 + \cdots + b_n v_n,
\end{equation*}
where \(a_i,b_j\in \mathbb{F} \). Applying \(T \) to \(v \), we obtain
\begin{equation*}
Tv = b_1 T v_1 + \cdots + b_n T v_n,
\end{equation*}
where the terms \(Tu_i \) disappeared since \(u_i\in \kernel(T) \). This shows that \((Tv_1,\ldots, Tv_n) \) indeed spans \(\range(T) \).
To show that \((Tv_1,\ldots, Tv_n) \) is a basis of \(\range(T) \), it remains to show that this list is linearly independent. Assume that \(c_1,\ldots, c_n \in \mathbb{F} \) are such that
\[ c_1 T v_1 + \cdots + c_n T v_n =0.\]
By linearity of \(T \), this implies that
\[ T(c_1 v_1 + \cdots + c_n v_n) = 0, \]
and so \(c_1 v_1 + \cdots + c_n v_n\in \kernel(T) \). Since \((u_1,\ldots,u_m) \) is a basis of \(\kernel(T) \), there must exist scalars \(d_1,\ldots,d_m\in\mathbb{F} \) such that
\begin{equation*}
c_1 v_1 + \cdots + c_n v_n = d_1 u_1 + \cdots + d_m u_m.
\end{equation*}
However, by the linear independence of \((u_1,\ldots, u_m,v_1,\ldots, v_n) \), this implies that all coefficients \(c_1=\cdots =c_n=d_1=\cdots =d_m=0 \). Thus, \((Tv_1,\ldots, Tv_n)\) is linearly independent, and we are done.
Example 6.5.2. Recall that the linear map \(T:\mathbb{R}^2 \to \mathbb{R}^2 \) defined by \(T(x,y)=(x-2y,3x+y) \) has \(\kernel(T)=\{0\} \) and \(\range(T)=\mathbb{R}^2 \). It follows that
\[ \dim(\mathbb{R}^2) = 2 = 0+2 =\dim(\kernel(T)) + \dim(\range(T)). \]
Corollary 6.5.3. Let \(T\) in \(\mathcal{L}(V,W) \).
- If \(\dim(V)>\dim(W) \), then \(T \) is not injective.
- If \(\dim(V)<\dim(W) \), then \(T \) is not surjective.
Proof.
By Theorem 6.5.1, we have that
\begin{equation*}
\begin{split}
\dim(\kernel(T)) &= \dim(V) - \dim(\range(T))\\
&\ge \dim(V) - \dim(W)>0.
\end{split}
\end{equation*}
Since \(T \) is injective if and only if \(\dim(\kernel(T))=0 \), \(T \) cannot be injective.
Similarly,
\begin{equation*}
\begin{split}
\dim(\range(T)) &= \dim(V) - \dim(\kernel(T))\\
&\le \dim(V) < \dim(W),
\end{split}
\end{equation*}
and so \(\range(T) \) cannot be equal to \(W \). Hence, \(T \) cannot be surjective.
Contributors
- Isaiah Lankham, Mathematics Department at UC Davis
- Bruno Nachtergaele, Mathematics Department at UC Davis
- Anne Schilling, Mathematics Department at UC Davis
Both hardbound and softbound versions of this textbook are available online at WorldScientific.com.