Skip to main content
Mathematics LibreTexts

10.E: Exercises for Chapter 10

  • Page ID
    249
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Calculational Exercises

    1. Consider \(\mathbb{R}^3 \) with two orthonormal bases: the canonical basis \(e = (e_1 , e_2 , e_3 )\) and the basis \(f = (f_1 , f_2 , f_3)\), where

    \[ f_1 = \frac{1}{\sqrt{3}}(1,1,1), f_2 = \frac{1}{\sqrt{6}}(1,-2,1), f_3 = \frac{1}{\sqrt{2}}(1,0,-1) \]

    Find the matrix, \(S\), of the change of basis transformation such that
    \[ [v]_f = S[v]_e, ~\rm{for~ all}~ v \in \mathbb{R}^3 ,\]

    where \([v]_b\) denotes the column vector of \(v\) with respect to the basis \(b\).

    2. Let \(v \in \mathbb{C}^4\) be the vector given by \(v = (1, i, −1, −i)\). Find the matrix (with respect to the canonical basis on \(\mathbb{C}^4\) ) of the orthogonal projection \(P \in \cal{L}(\mathbb{C}^4)\) such that

    \[null(P ) = {v}^\perp.\]

    3. Let \(U\) be the subspace of \(\mathbb{R}^3\) that coincides with the plane through the origin that is perpendicular to the vector \(n = (1, 1, 1) \in \mathbb{R}^3.\)

    (a) Find an orthonormal basis for \(U\).

    (b) Find the matrix (with respect to the canonical basis on \(\mathbb{R}^3\)) of the orthogonal projection \(P \in \cal{L}(\mathbb{R}^3\)) onto \(U\), i.e., such that \(range(P ) = U\).

    4. Let \(V = \mathbb{C}^4\) with its standard inner product. For \( \theta \in \mathbb{R}\), let

    \[ v_\theta = \left( \begin{array}{c} 1 \\ e^{i\theta} \\ e^{2i\theta} \\ e^{3i\theta} \end{array} \right) \in \mathbb{C}^4.\]

    Find the canonical matrix of the orthogonal projection onto the subspace \({v_\theta }^\perp\).

    Proof-Writing Exercises

    1. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F}\) with dimension \(n \in \mathbb{Z}_+ \), and suppose that \(b = (v_1 , v_2 , \ldots , v_n) \) is a basis for \(V\) . Prove that the coordinate vectors \([v_1 ]_b, [v_2 ]_b, \ldots, [v_n ]_b\) with respect to \(b\) form a basis for \(\mathbb{F}^n.\)

    2. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F}\), and suppose that \(T \in \cal{L}(V)\) is a linear operator having the following property: Given any two bases \(b\) and \(c\) for \(V\) , the matrix \(M(T, b)\) for \(T\) with respect to \(b\) is the same as the matrix \(M(T, c)\) for \(T\) with respect to \(c\). Prove that there exists a scalar \(\alpha \in \mathbb{F}\) such that \(T = \alpha I_V\), where \(I_V\) denotes the identity map on \(V\).


    This page titled 10.E: Exercises for Chapter 10 is shared under a not declared license and was authored, remixed, and/or curated by Isaiah Lankham, Bruno Nachtergaele, & Anne Schilling.