Skip to main content
Mathematics LibreTexts

3.7: Supplements - Vector Space

  • Page ID
    45604
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Introduction

    You have long taken for granted the fact that the set of real numbers, \(\mathbb{R}\), is closed under addition and multiplication, that each number has a unique additive inverse, and that the commutative, associative, and distributive laws were right as rain. The set \(\mathbb{C}\), of complex numbers also enjoys each of these properties, as do the sets \(\mathbb{R}^{n}\) and \(\mathbb{C}^n\) of columns of n real and complex numbers, respectively.

    To be more precise, we write \(\textbf{x}\) and \(\textbf{y}\) in \(\mathbb{R}^{n}\) as

    \(\textbf{x} = (x_{1}, x_{2}, \cdots, x_{n})^{T}\)

    \(\textbf{y} = (y_{1}, y_{2}, \cdots, y_{n})^{T}\)

    and define their vector sum as the elementwise sum

    \[\textbf{x}+\textbf{y} = \begin{pmatrix} {x_{1}+y_{1}}\\ {x_{2}+y_{2}}\\ {\vdots}\\ {x_{n}+y_{n}} \end{pmatrix} \nonumber\]

    and similarly, the product of a complex scalar, \(\textbf{z} \in \mathbb{C}\) with \(\textbf{x}\) as:

    \[\textbf{zx} = \begin{pmatrix} {zx_{1}}\\ {zx_{2}}\\ {\vdots}\\ {zx_{n}} \end{pmatrix} \nonumber\]

    Vector Space

    These notions lead naturally to the concept of vector space. A set \(V\) is said to be a vector space if

    1. \(\textbf{x}+\textbf{y}=\textbf{y}+\textbf{x}\) for each \(\textbf{x}\) and \(\textbf{y}\) in \(V\).
    2. \(\textbf{x}+\textbf{y}+\textbf{z} = \textbf{y}+\textbf{x}+\textbf{z}\) for each \(\textbf{x}\), \(\textbf{y}\) and \(\textbf{z}\) in \(V\).
    3. There is a unique "zero vector" such that \(\textbf{x}+\textbf{0} = \textbf{x}\) for each \(\textbf{x}\) in \(V\).
    4. For each \(\textbf{x}\) in \(V\) there is a unique vector \(-\textbf{x}\) such that \(\textbf{x}+ -\textbf{x} = \textbf{0}\).
    5. \(1 \textbf{x} = \textbf{x}\).
    6. \((c_{1}c_{2}) \textbf{x} = c_{1}(c_{2} \textbf{x})\) for each \(\textbf{x}\) in \(V\) and \(c_{1}\) and \(c_{2}\) in \(\mathbb{C}\).
    7. \(c(\textbf{x}+\textbf{y}) = c\textbf{x}+c\textbf{y}\) for each \(\textbf{x}\) and \(\textbf{y}\) in \(V\) and c in \(\mathbb{C}\).
    8. \((c_{1}+c_{2}) \textbf{x} = c_{1} \textbf{x}+c_{2} \textbf{x}\) for each \(\textbf{x}\) in \(V\) and \(c_{1}\) and \(c_{2}\) in \(\mathbb{C}\).

    This page titled 3.7: Supplements - Vector Space is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.