Skip to main content
Mathematics LibreTexts

7.3: The Inverse Laplace Transform- Complex Integration

  • Page ID
    21842
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The Inverse Laplace Transform

    If \(q\) is a rational function with poles \(\{\lambda_{j} | j = \{1, \cdots, h\}\}\) then the inverse Laplace transform of \(q\) is

    \[\mathscr{L}^{-1}(q)(t) \equiv \frac{1}{2 \pi i} \int q(z) e^{zt} dz \nonumber\]

    where \(C\) is a curve that encloses each of the poles of \(q\)

    \[\mathscr{L}^{-1}(q)(t) = \sum_{j = 1}^{h} res(\lambda_{j}) \nonumber\]

    Let us put this lovely formula to the test. We take our examples from discussion of the Laplace Transform and the inverse Laplace Transform. Let us first compute the inverse Laplace Transform of

    \[q(z) = \frac{1}{(z+1)^2} \nonumber\]

    According to Equation it is simply the residue of \(q(z)e^{zt}\) at \(z = -1\) i.e.,

    \[res(-1) = \lim_{z \rightarrow -1} de^{zt} dz = te^{-t} \nonumber\]

    This closes the circle on the example begun in the discussion of the Laplace Transform and continued in exercise one for chapter 6.

    For our next example we recall

    \[\mathscr{L} (x_{1}(s)) = \frac{0.19(s^2+1.5s+0.27)}{(s+1/6)^{4}(s^3+1.655s^2+0.4978s+0.0039)} \nonumber\]

    from the Inverse Laplace Transform. Using numde, sym2poly and residue, see fib4.m for details, returns

    \[r_{1} = \begin{pmatrix} {0.0029}\\ {262.8394}\\ {-474.1929}\\ {-1.0857}\\ {-9.0930}\\ {-0.3326}\\ {211.3507} \end{pmatrix} \nonumber\]

    and

    \[p_{1} = \begin{pmatrix} {-1.3565}\\ {-0.2885}\\ {-0.1667}\\ {-0.1667}\\ {-0.1667}\\ {-0.1667}\\ {-0.0100} \end{pmatrix} \nonumber\]

    You will be asked in the exercises to show that this indeed jibes with the

    \[x_{1}(t) = 211.35e^{\frac{-t}{100}}-(0.0554t^3+4.5464t^2+1.085t+474.19)e^{\frac{-t}{6}}+e^{\frac{-329t}{400}}(262.842 \cosh (\frac{\sqrt{73}t}{16})+262.836 \sinh (\frac{\sqrt{73}t}{16})) \nonumber\]

    achieved in the Laplace Transform via ilaplace.


    This page titled 7.3: The Inverse Laplace Transform- Complex Integration is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.