Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

8.6: The Eigenvalue Problem- Exercises

  • Page ID
    21852
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Exercise \(\PageIndex{1}\)

    Argue as in Proposition 1 in the discussion of the partial fraction expansion of the transfer function that if \(j \ne k\) then \(D_{j}P_{k} = P_{j}D_{k} = 0\).

    Exercise \(\PageIndex{2}\)

    Argue from the equation from the discussion of the Spectral Representation that \(D_{j}P_{j} = P_{j}D_{j} = D_{j}\).

    Exercise \(\PageIndex{3}\)

    The two previous exercises come in very handy when computing powers of matrices. For example, suppose \(B\) is 4-by-4, that \(h = 2\) and \(m_{1} = m_{2} = 2\). Use the spectral representation of \(B\) together with the first two exercises to arrive at simple formulas for \(B^{2}\) and \(B^{3}\).

    Compute the spectral representation of the circulant matrix

    \[B = \begin{pmatrix} {2}&{8}&{6}&{4}\\ {4}&{2}&{8}&{6}\\ {6}&{4}&{2}&{8}\\ {8}&{6}&{4}&{2} \end{pmatrix} \nonumber\]

    Carefully label all eigenvalues, eigenprojections and eigenvectors.