Skip to main content
Mathematics LibreTexts

10.2: The Matrix Exponential as a Limit of Powers

  • Page ID
    21862
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    You may recall from Calculus that for any numbers aa and tt one may achieve \(e^{a⁢t}\) via

    \[e^{at} = \lim_{k \rightarrow \infty} (1+\frac{at}{k})^k \nonumber\]

    The natural matrix definition is therefore

    \[e^{At} = \lim_{k \rightarrow \infty} (I+\frac{At}{k})^k \nonumber\]

    where \(I\) is the n-by-n identity matrix.

    Example \(\PageIndex{1}\)

    The easiest case is the diagonal case, e.g.,

    \[A = \begin{pmatrix} {1}&{0}\\ {0}&{2} \end{pmatrix} \nonumber\]

    for then

    \[(I+\frac{At}{k})^k = \begin{pmatrix} {(1+\frac{t}{k})^k}&{0}\\ {0}&{(1+\frac{2t}{k})^k} \end{pmatrix} \nonumber\]

    and so

    \[e^{At} = \begin{pmatrix} {e^t}&{0}\\ {0}&{e^{2t}} \end{pmatrix} \nonumber\]

    Note that this is NOT the exponential of each element of \(A\).

    Example \(\PageIndex{2}\)

    As a concrete example let us suppose

    \[A = \begin{pmatrix} {0}&{1}\\ {-1}&{0} \end{pmatrix} \nonumber\]

    From

    \[I+At = \begin{pmatrix} {1}&{t}\\ {-t}&{1} \end{pmatrix} \nonumber\]

    \[(I+\frac{At}{2})^2 = \begin{pmatrix} {1}&{\frac{t}{2}}\\ {\frac{-t}{2}}&{1} \end{pmatrix} \begin{pmatrix} {1}&{\frac{t}{2}}\\ {\frac{-t}{2}}&{1} \end{pmatrix} = \begin{pmatrix} {1-\frac{t^2}{4}}&{t}\\ {-t}&{1-\frac{t^2}{4}} \end{pmatrix} \nonumber\]

    \[(I+\frac{At}{2})^3 = \begin{pmatrix} {1-\frac{t^2}{3}}&{t-\frac{t^3}{27}}\\ {-t+\frac{t^3}{27}}&{1-\frac{t^2}{3}} \end{pmatrix} \nonumber\]

    \[(I+\frac{At}{2})^4 = \begin{pmatrix} {-\frac{3t^2}{8}+\frac{t^4}{256}+1}&{t-\frac{t^3}{16}}\\ {-t+\frac{t^3}{16}}&{-\frac{3t^2}{8}+\frac{t^4}{256}+1} \end{pmatrix} \nonumber\]

    \[(I+\frac{At}{2})^5 = \begin{pmatrix} {-\frac{2t^2}{5}+\frac{t^4}{125}+1}&{t-\frac{2t^3}{25}+\frac{t^5}{3125}}\\ {-t+\frac{2t^3}{25}-\frac{t^5}{3125}}&{-\frac{2t^2}{5}+\frac{t^4}{125}+1} \end{pmatrix} \nonumber\]

    We discern a pattern: the diagonal elements are equal even polynomials while the off diagonal elements are equal but opposite odd polynomials. The degree of the polynomial will grow with kk and in the limit we 'recognize'

    \[e^{At} = \begin{pmatrix} {\cos(t)}&{-\sin(t)}\\ {\sin(t)}&{\cos(t)} \end{pmatrix} \nonumber\]

    Example \(\PageIndex{3}\)

    If

    \[A = \begin{pmatrix} {0}&{1}\\ {0}&{0} \end{pmatrix} \nonumber\]

    then

    \[(I+\frac{At}{k})^k = \begin{pmatrix} {1}&{t}\\ {0}&{1} \end{pmatrix} \nonumber\]

    for each value of \(k\) and so

    \[e^{At} = \begin{pmatrix} {1}&{t}\\ {0}&{1} \end{pmatrix} \nonumber\]


    This page titled 10.2: The Matrix Exponential as a Limit of Powers is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?