Skip to main content
Mathematics LibreTexts

5.2.1: Exercises 5.2

  • Page ID
    71114
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In Exercises \(\PageIndex{1}\) – \(\PageIndex{5}\), a transformation \(T\) is given. Determine whether or not \(T\) is linear; if not, state why not.

    Exercise \(\PageIndex{1}\)

    \(T\left(\left[\begin{array}{c}{x_{1}}\\{x_{2}}\end{array}\right]\right)=\left[\begin{array}{c}{x_{1}+x_{2}}\\{3x_{1}-x_{2}}\end{array}\right]\)

    Answer

    Yes

    Exercise \(\PageIndex{2}\)

    \(T\left(\left[\begin{array}{c}{x_{1}}\\{x_{2}}\end{array}\right]\right)=\left[\begin{array}{c}{x_{1}+x_{2}^{2}}\\{x_{1}-x_{2}}\end{array}\right]\)

    Answer

    No; cannot have a squared term.

    Exercise \(\PageIndex{3}\)

    \(T\left(\left[\begin{array}{c}{x_{1}}\\{x_{2}}\end{array}\right]\right)=\left[\begin{array}{c}{x_{1}+1}\\{x_{2}+1}\end{array}\right]\)

    Answer

    No; cannot add a constant.

    Exercise \(\PageIndex{4}\)

    \(T\left(\left[\begin{array}{c}{x_{1}}\\{x_{2}}\end{array}\right]\right)=\left[\begin{array}{c}{1}\\{1}\end{array}\right]\)

    Answer

    No; cannot add a constant.

    Exercise \(\PageIndex{5}\)

    \(T\left(\left[\begin{array}{c}{x_{1}}\\{x_{2}}\end{array}\right]\right)=\left[\begin{array}{c}{0}\\{0}\end{array}\right]\)

    Answer

    Yes

    In Exercises \(\PageIndex{6}\) - \(\PageIndex{11}\), a linear transformation \(T\) is given. Find \([T]\).

    Exercise \(\PageIndex{6}\)

    \(T\left(\left[\begin{array}{c}{x_{1}}\\{x_{2}}\end{array}\right]\right)=\left[\begin{array}{c}{x_{1}+x_{2}}\\{x_{1}-x_{2}}\end{array}\right]\)

    Answer

    \([T]=\left[\begin{array}{cc}{1}&{1}\\{1}&{-1}\end{array}\right]\)

    Exercise \(\PageIndex{7}\)

    \(T\left(\left[\begin{array}{c}{x_{1}}\\{x_{2}}\end{array}\right]\right)=\left[\begin{array}{c}{x_{1}+2x_{2}}\\{3x_{1}-5x_{2}}\\{2x_{2}}\end{array}\right]\)

    Answer

    \([T]=\left[\begin{array}{cc}{1}&{2}\\{3}&{-5}\\{0}&{2}\end{array}\right]\)

    Exercise \(\PageIndex{8}\)

    \(T\left(\left[\begin{array}{c}{x_{1}}\\{x_{2}}\\{x_{3}}\end{array}\right]\right)=\left[\begin{array}{c}{x_{1}+2x_{2}-3x_{3}}\\{0}\\{x_{1}+4x_{3}}\\{5x_{2}+x_{3}}\end{array}\right]\)

    Answer

    \([T]=\left[\begin{array}{ccc}{1}&{2}&{-3}\\{0}&{0}&{0}\\{1}&{0}&{4}\\{0}&{5}&{1}\end{array}\right]\)

    Exercise \(\PageIndex{9}\)

    \(T\left(\left[\begin{array}{c}{x_{1}}\\{x_{2}}\\{x_{3}}\end{array}\right]\right)=\left[\begin{array}{c}{x_{1}+3x_{3}}\\{x_{1}-x_{3}}\\{x_{1}+x_{3}}\end{array}\right]\)

    Answer

    \([T]=\left[\begin{array}{ccc}{1}&{0}&{3}\\{1}&{0}&{-1}\\{1}&{0}&{1}\end{array}\right]\)

    Exercise \(\PageIndex{10}\)

    \(T\left(\left[\begin{array}{c}{x_{1}}\\{x_{2}}\end{array}\right]\right)=\left[\begin{array}{c}{0}\\{0}\end{array}\right]\)

    Answer

    \([T]=\left[\begin{array}{cc}{0}&{0}\\{0}&{0}\end{array}\right]\)

    Exercise \(\PageIndex{11}\)

    \(T\left(\left[\begin{array}{c}{x_{1}}\\{x_{2}}\\{x_{3}}\\{x_{4}}\end{array}\right]\right)=[x_{1}+2x_{2}+3x_{3}+4x_{4}]\)

    Answer

    \([T]=[1\:2\:3\:4]\)


    This page titled 5.2.1: Exercises 5.2 is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gregory Hartman et al..

    • Was this article helpful?