Skip to main content
Mathematics LibreTexts

7.2: B - Notation

  • Page ID
    70218
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The following table defines the notation used in this book. Page numbers or references refer to the first appearance of each symbol.

    Symbol Description Location
    \(0\) The number zero Paragraph in Section 1.1
    \(\mathbb{R}\) The real numbers Paragraph in Section 1.1
    \(\mathbb{R}^n\) Real \(n\)-space Definition 1.1.4 in Section 1.1
    \(R_i\) Row \(i\) of a matrix Item in Section 1.2
    \(\left(\begin{array}{c}1\\2\end{array}\right)\) A vector Paragraph in Section 2.1
    \(0\) The zero vector Paragraph in Section 2.1
    \(\text{Span}\{v_1,\:v_2,\cdots ,v_k\}\) Span of vectors Definition 2.2.2 in Section 2.2
    \(\{x\: | \: \text{condition}\}\) Set builder notation Note 2.2.3 in Section 2.2
    \(m\times n\) matrix Size of a matrix Note 2.3.1 in Section 2.3
    \(\text{Col}(A)\) Column space Definition 2.6.3 in Section 2.6
    \(\text{Nul}(A)\) Null space Definition 2.6.3 in Section 2.6
    \(\text{dim}V\) Dimension of a subspace Definition 2.7.2 in Section 2.7
    \(\text{rank}(A)\) The rank of a matrix Definition 2.9.1 in Section 2.9
    \(\text{nullity}(A)\) The nullity of a matrix Definition 2.9.1 in Section 2.9
    \(T:\:\mathbb{R}^n\to\mathbb{R}^m\) Transformation with the domain \(\mathbb{R}^n\) and codomain \(\mathbb{R}^m\) Definition 3.1.1 in Section 3.1
    \(\text{Id}_{\mathbb{R}^n}\) Identity transformation  Definition 3.1.2 in Section 3.1
    \(e_1,\:e_2,\cdots\) Standard Coordinate Vectors Note 3.3.2 in Section 3.3
    \(I_n\) \(n\times n\) identity matrix Definition 3.3.2 in Section 3.3
    \(a_{ij}\) The \(i,\: j\) entry of a matrix Definition 3.4.2 in Section 3.4
    \(0\) The zero transformation Paragraph in Section 3.4
    \(0\) The zero matrix Paragraph in Section 3.4
    \(A^{-1}\) Inverse of a matrix Definition 3.5.1 in Section 3.5
    \(T^{-1}\) Inverse of a transformation Definition 3.5.3 in Section 3.5
    \(\det(A)\) The determinant of a matrix Definition 4.1.1 in Section 4.1
    \(A^{T}\) Transpose of a matrix Definition 4.1.3 in Section 4.1
    \(A_{ij}\) Minor of a matrix Definition 4.2.1 in Section 4.2
    \(C_{ij}\) Cofactor of a matrix Definition 4.2.1 in Section 4.2
    \(\text{adj}(A)\) Adjugate matrix Paragraph in Section 4.2
    \(\text{vol}(P)\) Volume of a region Theorem 4.3.1 in Section 4.3
    \(\text{vol}(A)\) Volume of the parallelepiped of a matrix Theorem 4.3.1 in Section 4.3
    \(T(S)\) The image of a region under a transformation Paragraph in Section 4.3
    \(\text{Tr}(A)\) Trace of a matrix Definition 5.2.2 in Section 5.2
    \(\Re(v)\) Real part of a complex vector Paragraph in Section 5.5
    \(\Im(v)\) Imaginary part of a complex vector Paragraph in Section 5.5
    \(x\cdot y\) Dot product of two vectors Definition 6.1.1 in Section 6.1
    \(x\perp y\) \(x\) is orthogonal to \(y\) Paragraph in Section 6.1
    \(W^{\perp}\) Orthogonal complement of a subspace Definition 6.2.1 in Section 6.2
    \(\text{Row}(A)\) Row space of a matrix Definition 6.2.2 in Section 6.2
    \(x_{W}\) Orthogonal projection of \(x\) onto \(W\) Definition 6.3.2 in Section 6.3
    \(x_{W^{\perp}}\) Orthogonal part of \(x\) with respect to \(W\) Definition 6.3.2 in Section 6.3
    \(\mathbb{C}\) The complex numbers Definition 7.1.1 in Section 7.1
    \(\overline{z}\) Complex conjugate Item in Section 7.1
    \(\Re(z)\) Real part of a complex number Item in Section 7.1
    \(\Im(z)\) Imaginary part of a complex number Item in Section 7.1

    This page titled 7.2: B - Notation is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Dan Margalit & Joseph Rabinoff via source content that was edited to the style and standards of the LibreTexts platform.