7.2: B - Notation
- Page ID
- 70218
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The following table defines the notation used in this book. Page numbers or references refer to the first appearance of each symbol.
Symbol | Description | Location |
---|---|---|
\(0\) | The number zero | Paragraph in Section 1.1 |
\(\mathbb{R}\) | The real numbers | Paragraph in Section 1.1 |
\(\mathbb{R}^n\) | Real \(n\)-space | Definition 1.1.4 in Section 1.1 |
\(R_i\) | Row \(i\) of a matrix | Item in Section 1.2 |
\(\left(\begin{array}{c}1\\2\end{array}\right)\) | A vector | Paragraph in Section 2.1 |
\(0\) | The zero vector | Paragraph in Section 2.1 |
\(\text{Span}\{v_1,\:v_2,\cdots ,v_k\}\) | Span of vectors | Definition 2.2.2 in Section 2.2 |
\(\{x\: | \: \text{condition}\}\) | Set builder notation | Note 2.2.3 in Section 2.2 |
\(m\times n\) matrix | Size of a matrix | Note 2.3.1 in Section 2.3 |
\(\text{Col}(A)\) | Column space | Definition 2.6.3 in Section 2.6 |
\(\text{Nul}(A)\) | Null space | Definition 2.6.3 in Section 2.6 |
\(\text{dim}V\) | Dimension of a subspace | Definition 2.7.2 in Section 2.7 |
\(\text{rank}(A)\) | The rank of a matrix | Definition 2.9.1 in Section 2.9 |
\(\text{nullity}(A)\) | The nullity of a matrix | Definition 2.9.1 in Section 2.9 |
\(T:\:\mathbb{R}^n\to\mathbb{R}^m\) | Transformation with the domain \(\mathbb{R}^n\) and codomain \(\mathbb{R}^m\) | Definition 3.1.1 in Section 3.1 |
\(\text{Id}_{\mathbb{R}^n}\) | Identity transformation | Definition 3.1.2 in Section 3.1 |
\(e_1,\:e_2,\cdots\) | Standard Coordinate Vectors | Note 3.3.2 in Section 3.3 |
\(I_n\) | \(n\times n\) identity matrix | Definition 3.3.2 in Section 3.3 |
\(a_{ij}\) | The \(i,\: j\) entry of a matrix | Definition 3.4.2 in Section 3.4 |
\(0\) | The zero transformation | Paragraph in Section 3.4 |
\(0\) | The zero matrix | Paragraph in Section 3.4 |
\(A^{-1}\) | Inverse of a matrix | Definition 3.5.1 in Section 3.5 |
\(T^{-1}\) | Inverse of a transformation | Definition 3.5.3 in Section 3.5 |
\(\det(A)\) | The determinant of a matrix | Definition 4.1.1 in Section 4.1 |
\(A^{T}\) | Transpose of a matrix | Definition 4.1.3 in Section 4.1 |
\(A_{ij}\) | Minor of a matrix | Definition 4.2.1 in Section 4.2 |
\(C_{ij}\) | Cofactor of a matrix | Definition 4.2.1 in Section 4.2 |
\(\text{adj}(A)\) | Adjugate matrix | Paragraph in Section 4.2 |
\(\text{vol}(P)\) | Volume of a region | Theorem 4.3.1 in Section 4.3 |
\(\text{vol}(A)\) | Volume of the parallelepiped of a matrix | Theorem 4.3.1 in Section 4.3 |
\(T(S)\) | The image of a region under a transformation | Paragraph in Section 4.3 |
\(\text{Tr}(A)\) | Trace of a matrix | Definition 5.2.2 in Section 5.2 |
\(\Re(v)\) | Real part of a complex vector | Paragraph in Section 5.5 |
\(\Im(v)\) | Imaginary part of a complex vector | Paragraph in Section 5.5 |
\(x\cdot y\) | Dot product of two vectors | Definition 6.1.1 in Section 6.1 |
\(x\perp y\) | \(x\) is orthogonal to \(y\) | Paragraph in Section 6.1 |
\(W^{\perp}\) | Orthogonal complement of a subspace | Definition 6.2.1 in Section 6.2 |
\(\text{Row}(A)\) | Row space of a matrix | Definition 6.2.2 in Section 6.2 |
\(x_{W}\) | Orthogonal projection of \(x\) onto \(W\) | Definition 6.3.2 in Section 6.3 |
\(x_{W^{\perp}}\) | Orthogonal part of \(x\) with respect to \(W\) | Definition 6.3.2 in Section 6.3 |
\(\mathbb{C}\) | The complex numbers | Definition 7.1.1 in Section 7.1 |
\(\overline{z}\) | Complex conjugate | Item in Section 7.1 |
\(\Re(z)\) | Real part of a complex number | Item in Section 7.1 |
\(\Im(z)\) | Imaginary part of a complex number | Item in Section 7.1 |