Skip to main content
Mathematics LibreTexts

12.3: Eigenspaces

  • Page ID
    2079
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    fIn the previous example, we found two eigenvectors

    \[\begin{pmatrix}-1\\1\\0\end{pmatrix} \mbox{ and }\begin{pmatrix}1\\0\\1\end{pmatrix}\]

    for \(L\), both with eigenvalue \(1\). Notice that

    \[\begin{pmatrix}-1\\1\\0\end{pmatrix} + \begin{pmatrix}1\\0\\1\end{pmatrix}=\begin{pmatrix}0\\1\\1\end{pmatrix}\]

    is also an eigenvector of \(L\) with eigenvalue \(1\). In fact, any linear combination

    \[r\begin{pmatrix}-1\\1\\0\end{pmatrix} + s\begin{pmatrix}1\\0\\1\end{pmatrix}\]

    of these two eigenvectors will be another eigenvector with the same eigenvalue.

    More generally, let \(\{ v_{1}, v_{2}, \ldots \}\) be eigenvectors of some linear transformation \(L\) with the same eigenvalue \(\lambda\). A \(\textit{linear combination}\) of the \(v_{i}\) can be written \(c^{1}v_{1}+c^{2}v_{2}+\cdots\) for some constants \(\{c^{1}, c^{2},\ldots \}\). Then:

    \begin{eqnarray*}
    L(c^{1}v_{1}+c^{2}v_{2}+\cdots) &=& c^{1}Lv_{1}+c^{2}Lv_{2}+\cdots \textit{ by linearity of L}\\
    &=& c^{1}\lambda v_{1}+c^{2}\lambda v_{2}+\cdots \textit{ since \(Lv_{i}=\lambda v_{i}\) }\\
    &=& \lambda (c^{1}v_{1}+c^{2}v_{2}+\cdots).
    \end{eqnarray*}

    So every linear combination of the \(v_{i}\) is an eigenvector of \(L\) with the same eigenvalue \(\lambda\). In simple terms, any sum of eigenvectors is again an eigenvector \(\textit{if they share the same eigenvalue}\).

    The space of all vectors with eigenvalue \(\lambda\) is called an \(\textit{eigenspace}\). It is, in fact, a vector space contained within the larger vector space \(V\): It contains \(0_{V}\), since \(L0_{V}=0_{V}=\lambda 0_{V}\), and is closed under addition and scalar multiplication by the above calculation. All other vector space properties are inherited from the fact that \(V\) itself is a vector space. In other words, the subspace theorem, 9.1.1 chapter 9, ensures that \(V_{\lambda}:=\{v\in V|Lv=0\}\) is a subspace of \(V\).

    Contributor

     


    This page titled 12.3: Eigenspaces is shared under a not declared license and was authored, remixed, and/or curated by David Cherney, Tom Denton, & Andrew Waldron.