Skip to main content
Mathematics LibreTexts

6.2: Linear Functions on Hyperplanes

  • Page ID
    1899
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    It is not always so easy to write a linear operator as a matrix. Generally, this will amount to solving a linear systems problem. Examining a linear function whose domain is a hyperplane is instructive.

    Example 63

    Let $$V=\left\{ c_{1}\begin{pmatrix}1\\1\\0\end{pmatrix} +c_{2}\begin{pmatrix}0\\1\\1\end{pmatrix} \middle| c_{1},c_{2}\in \Re \right\} $$ and consider \(L:V\to \Re^{3}\) defined by
    $$
    L\begin{pmatrix}1\\1\\0\end{pmatrix} = \begin{pmatrix}0\\1\\0\end{pmatrix},\qquad
    L\begin{pmatrix}0\\1\\1\end{pmatrix} = \begin{pmatrix}0\\1\\0\end{pmatrix}.
    $$
    By linearity this specifies the action of \(L\) on any vector from \(V\) as
    $$
    L\left[ c_{1}\begin{pmatrix}1\\1\\0\end{pmatrix} + c_{2} \begin{pmatrix}0\\1\\1\end{pmatrix} \right]= (c_{1}+c_{2})\begin{pmatrix}0\\1\\0\end{pmatrix}.
    $$
    The domain of \(L\) is a plane and its range is the line through the origin in the \(x_{2}\) direction. It is clear how to check that \(L\) is linear.

    It is not clear how to formulate \(L\) as a matrix;
    since
    \begin{eqnarray*}
    L\begin{pmatrix}c_{1}\\\!\!c_{1}+c_{2}\!\!\\c_{2}\end{pmatrix} =
    \begin{pmatrix}
    0&0&0\\
    1&0&1\\
    0&0&0
    \end{pmatrix}
    \begin{pmatrix}c_{1}\\\!\!c_{1}+c_{2}\!\!\\c_{2}\end{pmatrix} =(c_{1}+c_{2})\begin{pmatrix}0\\1\\0\end{pmatrix}\, ,
    \end{eqnarray*}
    or since
    \begin{eqnarray*}
    L\begin{pmatrix}c_{1}\\\!\!c_{1}+c_{2}\!\!\\c_{2}\end{pmatrix} =
    \begin{pmatrix}
    0&0&0\\
    0&1&0\\
    0&0&0
    \end{pmatrix}
    \begin{pmatrix}c_{1}\\\!\!c_{1}+c_{2}\!\!\\c_{2}\end{pmatrix} =(c_{1}+c_{2})\begin{pmatrix}0\\1\\0\end{pmatrix}
    \end{eqnarray*}
    you might suspect that \(L\) is equivalent to one of these \(3\times3\) matrices. It is not. All \(3\times3\) matrices have \(\Re^{3}\) as their domain, and the domain of \(L\) is smaller than that. When we do realize this \(L\) as a matrix it will be as a \(3\times2\) matrix. We can tell because the domain of \(L\) is 2 dimensional and the codomain is \(3\) dimensional

    Contributor


    This page titled 6.2: Linear Functions on Hyperplanes is shared under a not declared license and was authored, remixed, and/or curated by David Cherney, Tom Denton, & Andrew Waldron.