$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 9.3: Review Problems

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

1. (Subspace Theorem) Suppose that $$V$$ is a vector space and that $$U \subset V$$ is a subset of $$V$$. Check all the vector space requirements to show that
$\mu u_{1} + \nu u_{2} \in U \textit{ for all } u_{1}, u_{2} \in U, \mu, \nu \in \Re$
implies that $$U$$ is a subspace of $$V$$.

2. (Subspaces spanning sets polynolmial span) Determine if $$P_{3}^{\mathbb{R}}$$ be the vector space of polynomials of degree 3 or less in the variable $$x$$.
$x-x^{3} \in span\{ x^{2}, 2x+x^{2}, x+x^{3} \}.$

3. (UandV) Let $$U$$ and $$W$$ be subspaces of $$V$$. Are:
a) $$U\cup W$$
b) $$U\cap W$$
also subspaces? Explain why or why not. Draw examples in $$\Re^{3}$$.

4. Let $$L:\mathbb{R}^{3}\to \mathbb{R}^3$$ where $$L(x,y,z)=(x+2y+z,2x+y+z,0)\, .$$
Find $${\rm ker} L$$, $${\rm im} L$$ and eigenspaces $$\mathbb{R}_{-1}$$, $$\mathbb{R}_{3}$$. Your answers should be subsets of $$\mathbb {R}^{3}$$. Express them using the $${\rm span}$$ notation.