11.1: Bases in Rⁿ
- Page ID
- 2071
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In review question 2, chapter 10 you checked that
\[ \Re^{n} = span \left\{ \begin{pmatrix}1\\0\\ \vdots \\ 0\end{pmatrix}, \begin{pmatrix}0\\1\\ \vdots \\ 0\end{pmatrix}, \ldots, \begin{pmatrix}0\\0\\ \vdots \\ 1\end{pmatrix}\right\}, \]
and that this set of vectors is linearly independent. (If you didn't do that problem, check this before reading any further!) So this set of vectors is a basis for \(\Re^{n}\), and \(\dim \Re^{n}=n\). This basis is often called the \(\textit{standard}\) or \(\textit{canonical basis}\) for \(\Re^{n}\). The vector with a one in the \(i\)th position and zeros everywhere else is written \(e_{i}\). (You could also view it as the function \(\{1,2,\ldots,n\}\to \mathbb{R}\) where \(e_{i}(j)=1\) if \(i=j\) and \(0\) if \(i\neq j\).) It points in the direction of the \(i^{th}\) coordinate axis, and has unit length. In multivariable calculus classes, this basis is often written \(\{ i, j, k \}\) for \(\Re^{3}\).
Note that it is often convenient to order basis elements, so rather than writing a set of vectors, we would write a list. This is called an ordered basis. For example, the canonical ordered basis for \(\mathbb{R^{n}}\) is \((e_{1},e_{2},\ldots,e_{n})\). The possibility to reorder basis vectors is not the only way in which bases are non-unique:
Remark (Bases are not unique)
While there exists a unique way to express a vector in terms of any particular basis, bases themselves are far from unique.
For example, both of the sets:
\[ \left\{ \begin{pmatrix}1\\0\end{pmatrix}, \begin{pmatrix}0\\1\end{pmatrix} \right\} \textit{ and } \left\{ \begin{pmatrix}1\\1\end{pmatrix}, \begin{pmatrix}1\\-1\end{pmatrix} \right\} \]
are bases for \(\Re^{2}\). Rescaling any vector in one of these sets is already enough to show that \(\Re^{2}\) has infinitely many bases. But even if we require that all of the basis vectors have unit length, it turns out that there are still infinitely many bases for \(\Re^{2}\) (see review question 3).
To see whether a collection of vectors \(S=\{v_{1}, \ldots, v_{m} \}\) is a basis for \(\Re^{n}\), we have to check that they are linearly independent and that they span \(\Re^{n}\). From the previous discussion, we also know that \(m\) must equal \(n\), so lets assume \(S\) has \(n\) vectors. If \(S\) is linearly independent, then there is no non-trivial solution of the equation
\[0 = x^{1}v_{1}+\cdots + x^{n}v_{n}.\]
Let \(M\) be a matrix whose columns are the vectors \(v_{i}\) and \(X\) the column vector with entries \(x^{i}\). Then the above equation is equivalent to requiring that there is a unique solution to
\[MX=0\, .\]
To see if \(S\) spans \(\Re^{n}\), we take an arbitrary vector \(w\) and solve the linear system
\[w=x^{1}v_{1}+\cdots + x^{n}v_{n}\]
in the unknowns \(x^{i}\). For this, we need to find a unique solution for the linear system \(MX=w\).
Thus, we need to show that \(M^{-1}\) exists, so that
\[ X=M^{-1}w \]
is the unique solution we desire. Then we see that \(S\) is a basis for \(V\) if and only if \(\det M\neq 0\).
Theorem
Let \(S=\{v_{1}, \ldots, v_{m} \}\) be a collection of vectors in \(\Re^{n}\). Let \(M\) be the matrix whose columns are the vectors in \(S\). Then \(S\) is a basis for \(V\) if and only if \(m\) is the dimension of \(V\) and
\[\det M \neq 0.\]
Remark
Also observe that \(S\) is a basis if and only if \({\rm RREF}(M)=I\).
Example \(\PageIndex{1}\):
Let
\[
S=\left\{ \begin{pmatrix}1\\0\end{pmatrix}, \begin{pmatrix}0\\1\end{pmatrix} \right\} \textit{ and }
T=\left\{ \begin{pmatrix}1\\1\end{pmatrix}, \begin{pmatrix}1\\-1\end{pmatrix} \right\}.
\]
Then set \(M_{S}=\begin{pmatrix}
1 & 0\\
0 & 1\\
\end{pmatrix}\). Since \(\det M_{S}=1\neq 0\), then \(S\) is a basis for \(\Re^{2}\).\\
Likewise, set \(M_{T}=\begin{pmatrix}
1 & 1\\
1 & -1\\
\end{pmatrix}\). Since \(\det M_{T}=-2\neq 0\), then \(T\) is a basis for \(\Re^{2}\).
Contributor
David Cherney, Tom Denton, and Andrew Waldron (UC Davis)