12.2: The Eigenvalue-Eigenvector Equation
- Page ID
- 2078
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In Section 12, we developed the idea of eigenvalues and eigenvectors in the case of linear transformations \(\Re^{2}\rightarrow \Re^{2}\). In this section, we will develop the idea more generally.
Definition: the Eigenvalue-Eigenvector Equation
For a linear transformation \(L \colon V\rightarrow V\), then \(\lambda\) is an eigenvalue of \(L\) with \(\textit{eigenvector}\) \(v\neq 0_{V}\) if
\[Lv=\lambda v.\]
This equation says that the direction of \(v\) is invariant (unchanged) under \(L\).
Let's try to understand this equation better in terms of matrices. Let \(V\) be a finite-dimensional vector space and let \(L \colon V\rightarrow V\). If we have a basis for \(V\) we can represent \(L\) by a square matrix \(M\) and find eigenvalues \(\lambda\) and associated eigenvectors \(v\) by solving the homogeneous system
\[(M-\lambda I)v=0.\]
This system has non-zero solutions if and only if the matrix
\[M-\lambda I\]
is singular, and so we require that
\[\det (\lambda I-M) = 0.\]
The left hand side of this equation is a polynomial in the variable \(\lambda\) called the \(\textit{characteristic polynomial}\) \(P_{M}(\lambda)\) of \(M\). For an \(n\times n\) matrix, the characteristic polynomial has degree \(n\). Then
\[P_{M}(\lambda) = \lambda^{n}+c_{1}\lambda^{n-1}+\cdots+c_{n}.\]
Notice that \(P_{M}(0)=\det (-M)=(-1)^{n}\det M\).
The Fundamental Theorem of Algebra states that any polynomial can be factored into a product of first order polynomials over \(C\). Then there exists a collection of \(n\) complex numbers \(\lambda_{i}\) (possibly with repetition) such that
\[P_{M}(\lambda)=(\lambda-\lambda_{1})(\lambda-\lambda_{2})\cdots(\lambda-\lambda_{n})\: \Longrightarrow\: P_{M}(\lambda_{i})=0\]
The eigenvalues \(\lambda_{i}\) of \(M\) are exactly the roots of \(P_{M}(\lambda)\). These eigenvalues could be real or complex or zero, and they need not all be different. The number of times that any given root \(\lambda_{i}\) appears in the collection of eigenvalues is called its \(\textit{multiplicity}\).
Example \(\PageIndex{1}\):
Let \(L\) be the linear transformation \(L \colon \Re^{3}\rightarrow \Re^{3}\) given by
$$L\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}2x+y-z\\ x+2y-z\\ -x-y+2z\end{pmatrix}\, .\]
In the standard basis the matrix \(M\) representing \(L\) has columns \(Le_{i}\) for each \(i\), so:
\[
\begin{pmatrix}x\\y\\z\end{pmatrix} \stackrel{L}{\mapsto}
\begin{pmatrix}
2 & 1 & -1\\
1 & 2 & -1\\
-1 & -1 & 2\\
\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix}.
\]
Then the characteristic polynomial of \(L\) is
\begin{eqnarray*}
P_{M}(\lambda)&=&\det \begin{pmatrix}
{\lambda - 2} &{ -1} & {1}\\
{-1} &{ \lambda - 2} & {1}\\
{1} & {1} & {\lambda - 2}\\
\end{pmatrix}\\[4pt]
&=& (\lambda - 2)[ (\lambda - 2)^{2}-1 ] +
[-(\lambda - 2)-1 ] +
[-(\lambda - 2)-1] \\[4pt]
&=& (\lambda - 1)^{2}(\lambda - 4)\, .
\end{eqnarray*}
So \(L\) has eigenvalues \(\lambda_{1}=1\) (with multiplicity \(2\)), and \(\lambda_{2}=4\) (with multiplicity \(1\)).
To find the eigenvectors associated to each eigenvalue, we solve the homogeneous system \((M-\lambda_{i}I)X=0\) for each \(i\).
1. \([\underline{\lambda=4:}]\) We set up the augmented matrix for the linear system:
\[\left(\begin{array}{rrrr} -2 & 1 &-1 & 0 \\1 & -2 &-1 & 0 \\-1 & -1 &-2 & 0 \end{array}\right) \sim \left(\begin{array}{rrrr} 1 & -2 &-1 & 0 \\0 & -3 &-3 & 0 \\0 & -3 &-3 & 0 \end{array}\right) \sim \left(\begin{array}{rrrr} 1 & 0 & 1 & 0 \\0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)\]
So we see that \(z=z=:t\), \(y=-t\), and \(x=-t\) gives a formula for eigenvectors in terms of the free parameter \(t\). Any such eigenvector is of the form \(t\begin{pmatrix}-1\\-1\\1\end{pmatrix}\); thus \(L\) leaves a line through the origin invariant.
2. \([\underline{\lambda=1:}]\) Again we set up an augmented matrix and find the solution set:
\[\left(\begin{array}{rrrr} 1 & 1 &-1 & 0 \\1 & 1 &-1 & 0 \\-1 & -1 & 1 & 0 \end{array}\right) \sim \left(\begin{array}{rrrr} 1 & 1 & -1 & 0 \\0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 \end{array}\right)\]
Then the solution set has two free parameters, \(s\) and \(t\), such that \(z=z=:t\), \(y=y=:s\), and \(x=-s+t\). Thus \(L\) leaves invariant the set:
\[ \left\{ s\begin{pmatrix}-1\\1\\0\end{pmatrix}+t\begin{pmatrix}1\\0\\1\end{pmatrix} \middle| s,t\in \Re \right\}.\]
This set is a plane through the origin. So the multiplicity two eigenvalue has two independent eigenvectors, \(\begin{pmatrix}-1\\1\\0\end{pmatrix}\) and \(\begin{pmatrix}1\\0\\1\end{pmatrix}\) that determine an invariant plane.
Example \(\PageIndex{1}\):
Let \(V\) be the vector space of smooth \((\textit{i.e.} infinitely ~differentiable)\) functions \(f \colon \Re\rightarrow \Re\). Then the derivative is a linear operator \(\frac{d}{dx} \colon V\rightarrow V\). What are the eigenvectors of the derivative? In this case, we don't have a matrix to work with, so we have to make do. A function \(f\) is an eigenvector of \(\frac{d}{dx}\) if there exists some number \(\lambda\) such that \(\frac{d}{dx}f=\lambda f\). An obvious candidate is the exponential function, \(e^{\lambda x}\); indeed, \(\frac{d}{dx} e^{\lambda x} = \lambda e^{\lambda x}\).
The operator \(\frac{d}{dx}\) has an eigenvector \(e^{\lambda x}\) for every \(\lambda \in \Re\).