Skip to main content
Mathematics LibreTexts

13.3: Changing to a Basis of Eigenvectors

  • Page ID
    2083
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    If we are changing to a basis of eigenvectors, then there are various simplifications:

    1. Since \(L:V\to V\), most likely you already know the matrix \(M\) of \(L\) using the same input basis as output basis \(S=(u_{1},\ldots ,u_{n})\) (say).

    2. In the new basis of eigenvectors \(S'(v_{1},\ldots,v_{n})\), the matrix \(D\) of \(L\) is diagonal because \(Lv_{i}=\lambda_{i} v_{i}\) and so

    \[
    \big(L(v_{1}),L(v_{2}),\ldots,L(v_{n})\big)=(v_{1},v_{2},\ldots, v_{n})
    \begin{pmatrix}
    \lambda_{1}&0&\cdots&0\\
    0&\lambda_{2}&&0\\
    \vdots&&\ddots&\vdots \\
    0&0&\cdots&\lambda_{n}\end{pmatrix}\, .
    \]

    3. If \(P\) is the change of basis matrix from \(S\) to \(S'\), the diagonal matrix of eigenvalues \(D\) and the original matrix are related by \(D=P^{-1}MP\).

    This motivates the following definition:

    Definition

    A matrix \(M\) is diagonalizable if there exists an invertible matrix \(P\) and a diagonal matrix \(D\) such that

    \[ D=P^{-1}MP. \]

    We can summarize as follows:

    1. Change of basis rearranges the components of a vector by the change of basis matrix \(P\), to give components in the new basis.
    2. To get the matrix of a linear transformation in the new basis, we \(\textit{conjugate}\) the matrix of \(L\) by the change of basis matrix: \(M\mapsto P^{-1}MP\).

    If for two matrices \(N\) and \(M\) there exists a matrix \(P\) such that \(M=P^{-1}NP\), then we say that \(M\) and \(N\) are \(\textit{similar}\). Then the above discussion shows that diagonalizable matrices are similar to diagonal matrices.

    Corollary

    A square matrix \(M\) is diagonalizable if and only if there exists a basis of eigenvectors for \(M\). Moreover, these eigenvectors are the columns of the change of basis matrix \(P\) which diagonalizes \(M\).

    Example \(\PageIndex{1}\):

    Let's try to diagonalize the matrix

    \[M=\begin{pmatrix}
    -14 & -28 & -44 \\
    -7 & -14 & -23 \\
    9 & 18 & 29 \\
    \end{pmatrix}.\]

    The eigenvalues of \(M\) are determined by \[\det(M-\lambda I)=-\lambda^{3}+\lambda^{2}+2\lambda=0.\]

    So the eigenvalues of \(M\) are \(-1,0,\) and \(2\), and associated eigenvectors turn out to be

    \[v_{1}=\begin{pmatrix}-8 \\ -1 \\ 3\end{pmatrix},~~ v_{2}=\begin{pmatrix}-2 \\ 1 \\ 0\end{pmatrix}, {\rm ~and~~} v_{3}=\begin{pmatrix}-1 \\ -1 \\ 1\end{pmatrix}.$$

    In order for \(M\) to be diagonalizable, we need the vectors \(v_{1}, v_{2}, v_{3}\) to be linearly independent. Notice that the matrix

    \[P=\begin{pmatrix}v_{1} & v_{2} & v_{3}\end{pmatrix}=\begin{pmatrix}
    -8 & -2 & -1 \\
    -1 & 1 & -1 \\
    3 & 0 & 1 \\
    \end{pmatrix}\]

    is invertible because its determinant is \(-1\). Therefore, the eigenvectors of \(M\) form a basis of \(\Re\), and so \(M\) is diagonalizable.
    Moreover, because the columns of \(P\) are the components of eigenvectors,

    \[
    MP=\begin{pmatrix}Mv_{1} &Mv_{2}& Mv_{3}\end{pmatrix}=\begin{pmatrix}-1.v_{1}&0.v_{2}&2.v_{3}\end{pmatrix}=\begin{pmatrix}v_{1}& v_{2} & v_{3}\end{pmatrix}\begin{pmatrix}
    -1 & 0 & 0 \\
    0 & 0 & 0 \\
    0 & 0 & 2 \\
    \end{pmatrix}\, .
    \]

    Hence, the matrix \(P\) of eigenvectors is a change of basis matrix that diagonalizes \(M\):
    \[P^{-1}MP=\begin{pmatrix}
    -1 & 0 & 0 \\
    0 & 0 & 0 \\
    0 & 0 & 2 \\
    \end{pmatrix}.\]

    eigenbasis.jpg

    Contributor

    This page titled 13.3: Changing to a Basis of Eigenvectors is shared under a not declared license and was authored, remixed, and/or curated by David Cherney, Tom Denton, & Andrew Waldron.

    • Was this article helpful?