14.7: Review Problems
- Page ID
- 2092
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)1. Let \(D = \begin{pmatrix}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{pmatrix}\)
a) Write \(D\) in terms of the vectors \(e_{1}\) and \(e_{2}\), and their transposes.
b) Suppose \(P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is invertible. Show that \(D\) is similar to
\[M = \frac{1}{ad - bc}\begin{pmatrix}\lambda_{1}ad - \lambda_{2}bc & -(\lambda_{1} - \lambda_{2})ab \\ (\lambda_{1} - \lambda_{2})cd & -\lambda{1}bc + \lambda_{2}ad\end{pmatrix}\]
c) Suppose the vectors \((a,b)\) and \((c,d)\) are orthogonal. What can you say about \(M\) in this case? (\(\textit{Hint:}\) think about what \(M^{T}\) is equal to.)
2. Suppose \(S = {v_{1},...,v_{n}}\) is an \(\textit{orthogonal}\) (not orthonormal) basis for \(\mathbb{R}^{n}\). Then we can write any vector \(v\) as \(v = \sum_{i} c^{i}v_{i}\) for some constants \(c^{i}\). Find a formula for the constants \(c^{i}\) in terms of \(v\) and the vectors in \(S\).
3. Let \(u, v\) be linearly independent vectors in \(\mathbb{R}^{3}\), and \(P = span{u, v}\) be the plane spanned by \(u\) and \(v\).
(a) Is the vector \(v^{\perp} := v - \frac{u \cdot v}{u \cdot u}u\) in the plane \(P\)?
(b) What is the (cosine of the) angle between \(v^{\perp}\) and \(u^{\perp}\)?
(c) How can you find a third vector perpendicular to both \(u\) and \(v^{\perp}\)?
(d) Construct an orthonormal basis for \(\mathbb{R}^{3}\) from \(u\) and \(v\).
(e) Test your abstract formulæ starting with \(u = (1,2,0)\) and \(v = (0,1,1)\).
4. Find an orthonormal basis for \(\mathbb{R}^{4}\) which includes \((1,1,1,1)\) using the following procedure:
(a) Pick a vector perpendicular to the vector
\[v_{1} = \begin{pmatrix}1\\1\\1\\1\end{pmatrix}\]
from the solution set of the matrix equation
\[v_{1}^{T}x = 0.\]
Pick the vector \(v_{2}\) obtained from the standard Gaussian elimination procedure which is the coefficient of \(x_{2}\).
(b) Pick a vector perpendicular to both \(v_{1}\) and \(v_{2}\) from the solutions set of the matrix equation
\[\begin{pmatrix}v_{1}^{T} \\ v_{2}^{T}\end{pmatrix}x = 0.\]
Pick the vector \(v_{3}\) obtained from the standard Gaussian elimination procedure with \(x_{3}\) as the coefficient.
(c) Pick a vector perpendicular to \(v_{1}, v_{2}\), and \(v_{3}\) from the solution set of the matrix equation
\[\begin{pmatrix}v_{1}^{T} \\ v_{2}^{T} \\ v_{3}^{T}\end{pmatrix}x = 0.
Pick the vector \(v_{4}\) obtained from the standard Gaussian elimination procedure with \(x_{3}\) as the coefficient.
(d) Normalize the four vectors obtained above.
5. Use the inner product
\[f \cdot g := \int_{0}^{1} f(x)g(x)dx\]
on the vector space \(V =span{1,x,x^{2},x^{3}}\) to perform the Gram-Schmidt procedure on the set of vectors \({1,x,x^{2},x^{3}}\)
6. Use the inner product on the vector space \(V = span{sin(x), sin(2x), sin(3x)}\) to perform the Gram-Schmidt procedure on the set of vectors \({sin(x), sin(2x), sin(3x)}\).
What do you suspect about the vector space \(span{sin(nx) | n \in N}\)?
What do you suspect about the vector space \(span{sin(ax) | a \in R}\)?
7.
- Show that if \(Q\) is an orthogonal \(n \times n\) matrix then $$u \cdot v = (Qu) \cdot (Qv),$$ for any \(u, v \in \mathbb{R}^{n}\). That is, \(Q\) preserves the inner product.
- Does \(Q\) preserve the outer product?
- If \({u_{1},...,u_{n}}\) is an orthonormal set and \({\lambda_{1},··· , \lambda_{n}}\) is a set of numbers then what are the eigenvalues and eigenvectors of the matrix \(M = \sum^{n}_{i=1} \lambda_{i}u_{i}u^{T}_{i}\)?
- How does \(Q\) change this matrix? How do the eigenvectors and eigenvalues change?
8. Carefully write out the Gram-Schmidt procedure for the set of vectors $$\begin{Bmatrix}\begin{pmatrix}1 \\1 \\1\end{pmatrix}, \begin{pmatrix}1 \\-1 \\1\end{pmatrix}, \begin{pmatrix}1 \\1 \\-1\end{pmatrix}\end{Bmatrix}.$$ Are you free to rescale the second vector obtained in the procedure to a vector with integer components?
9.
a) Suppose \(u\) and \(v\) are linearly independent. Show that \(u\) and \(v^{\perp}\) are also linearly independent. Explain why \({u, v^{\perp}}\) is a basis for \(span{u,v}\).
b) Repeat the previous problem, but with three independent vectors \(u, v, w\).
10. Find the \(QR\) factorization of $$M = \begin{pmatrix}1&0&2\\-1&2&0\\-1&-2&2\end{pmatrix}.\]
11. Given any three vectors \(u, v, w\), when do \(v^{\perp}\) or \(w^{\perp}\) of the Gram-Schmidt procedure vanish?
12. For \(U\) a subspace of \(W\), use the subspace theorem to check that \(U^{\perp}\) is a subspace of \(W\).
13. Let \(S_{n}\) and \(A_{n}\) define the space of \(n \times n\) symmetric and anti-symmetric matrices respectively. These are subspaces of the vector space \(M^{n}_{n}\) of all \(n \times n\) matrices. What is \(dim M_{n}^{n}\), \(dim S_{n}\) and \(dim A_{n}\)? Show that \(M^{n}_{n} = S_{n} + A_{n}\). Is \(A^{\perp}_{n} = S_{n}\)? Is \(M^{n}_{n} = S_{n} \oplus A_{n}\)?
14. The vector space \(V = span{sin(t), sin(2t), sin(3t)}\) has an inner product: $$f \cdot g := \int_{0}^{2\pi} f(t)g(t)dt.$$ Find the orthogonal compliment to \(U = span{sin(t) + sin(2t)}\) in \(V\). Express \(sin(t) - sin(2t)\) as the sum of vectors from \(U\) and \(U^{T}\).
Contributor
David Cherney, Tom Denton, and Andrew Waldron (UC Davis)