6.S: Functions (Summary)
- Page ID
- 7073
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Important Definitions
- Function, page 284
- Domain of a function, page 285
- Codomain of a function,page285
- Image of \(x\) under \(f\), page 285
- preimage of \(y\) under \(f\), page 285
- Independent variable, page 285
- Dependent variable, page 285
- Range of a function, page 287
- Image of a function, page 287
- Equal functions, page 298
- Sequence, page 301
- Injection, page 310
- One-to-one function, page 310
- Surjection, page 311
- Onto function, page 311
- Bijection, page 312
- One-to-one and onto, page 312
- Composition of \(f\) and \(g\), page 325
- Composite function, page 325
- \(f\) followed by \(g\), page 325
- Inverse of a function, page 338
- Image of a set under a function, page 351
- preimage of a set under a function, page 351
Important Theorems and Results about Functions
- Theorem 6.20. Let \(A\), \(B\) and \(C\) be nonempty sets and let \(f: A \to B\) and \(g: B \to C\).
1. If \(f\) and \(g\) are both injections, then \(g \circ f\) is an injection.
2. If \(f\) and \(g\) are both surjections, then \(g \circ f\) is a surjection.
3. If \(f\) and \(g\) are both bijections, then \(g \circ f\) is a bijection. - Theorem 6.21. Let \(A\), \(B\) and \(C\) be nonempty sets and let \(f: A \to B\) and \(g: B \to C\).
1. If \(g \circ f: A \to C\) is an injection, then \(f: A \to B\) is an injeciton.
2. If \(g \circ f: A \to C\) is a surjection, then \(g: B \to C\) is a surjeciton. - Theorem 6.22. Let \(A\) and \(B\) be nonempty sets and let \(f\) be a subset of \(A \times B\) that satisfies the following two properties:
\(\bullet\) For every \(a \in A\), there exists \(b \in B\) such that \((a, b) \in f\); and
\(\bullet\) For every \(a \in A\) and every \(b, c \in B\), if \((a, b) \in f\) and \((a, c) \in f\), then \(b = c\).
If we use \(f(a) = b\) whenever \((a, b) \in f\), then \(f\) is a function from \(A\) to \(B\). - Theorem 6.25. Let \(A\) and \(B\) be nonempty sets and let \(f: A \to B\). The inverse of \(f\) is a function from \(B\) to \(A\) if and only if \(f\) is a bijection.
- Theorem 6.26. Let \(A\) and \(B\) be nonempty sets and let \(f: A \to B\) be a bijection. Then \(f^{-1}: B \to A\) is a function, and for every \(a \in A\) and \(b \in B\),
\(f(a) = b\) if and only if \(f^{-1}(b) = a\). - Corollary 6.28. Let \(A\) and \(B\) be nonempty sets and let \(f: A \to B\) be a bijection. Then
1. For every \(x\) in \(A\), \((f^{-1} \circ f)(x) = x\).
2. For every \(y\) in \(B\), \((f \circ f^{-1} (y) = y\). - Theorem 6.29. Let \(f: A \to B\) and \(g: B \to C\) be bijections. Then \(g \circ f\) is a bijection and \((g \circ f)^{-1} = f^{-1} \circ g^{-1}\).
- Theorem 6.34. Let \(f: S \to T\) be a function and let \(A\) and \(B\) be subsets of \(S\). Then
1. \(f(A \cap B) \subseteq f(A) \cap f(B)\)
2. \(f(A \cup B) = f(A) \cup f(B)\) - Theorem 6.35. Let \(f: S \to T\) be a function and let \(C\) and \(D\) be subsets of \(T\). Then
1. \(f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)\)
2. \(f^{-1}(C \cup D) = f^{-1}(C) \cap f^{-1}(D)\) - Theorem 6.36. Let \(f: S \to T\) be a function and let \(A\( be a subset of \(S\) and let \(C\) be a subset of \(T\). Then
1. \(A \subseteq f^{-1}(f(A))\)
2. \(f(f^{-1}(C) \subseteq C\)