# 6.S: Functions (Summary)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Important Definitions

• Function, page 284
• Domain of a function, page 285
• Codomain of a function,page285
• Image of $$x$$ under $$f$$, page 285
• preimage of $$y$$ under $$f$$, page 285
• Independent variable, page 285
• Dependent variable, page 285
• Range of a function, page 287
• Image of a function, page 287
• Equal functions, page 298
• Sequence, page 301
• Injection, page 310
• One-to-one function, page 310
• Surjection, page 311
• Onto function, page 311
• Bijection, page 312
• One-to-one and onto, page 312
• Composition of $$f$$ and $$g$$, page 325
• Composite function, page 325
• $$f$$ followed by $$g$$, page 325
• Inverse of a function, page 338
• Image of a set under a function, page 351
• preimage of a set under a function, page 351

Important Theorems and Results about Functions

• Theorem 6.20. Let $$A$$, $$B$$ and $$C$$ be nonempty sets and let $$f: A \to B$$ and $$g: B \to C$$.

1. If $$f$$ and $$g$$ are both injections, then $$g \circ f$$ is an injection.
2. If $$f$$ and $$g$$ are both surjections, then $$g \circ f$$ is a surjection.
3. If $$f$$ and $$g$$ are both bijections, then $$g \circ f$$ is a bijection.
• Theorem 6.21. Let $$A$$, $$B$$ and $$C$$ be nonempty sets and let $$f: A \to B$$ and $$g: B \to C$$.

1. If $$g \circ f: A \to C$$ is an injection, then $$f: A \to B$$ is an injeciton.
2. If $$g \circ f: A \to C$$ is a surjection, then $$g: B \to C$$ is a surjeciton.
• Theorem 6.22. Let $$A$$ and $$B$$ be nonempty sets and let $$f$$ be a subset of $$A \times B$$ that satisfies the following two properties:

$$\bullet$$ For every $$a \in A$$, there exists $$b \in B$$ such that $$(a, b) \in f$$; and
$$\bullet$$ For every $$a \in A$$ and every $$b, c \in B$$, if $$(a, b) \in f$$ and $$(a, c) \in f$$, then $$b = c$$.

If we use $$f(a) = b$$ whenever $$(a, b) \in f$$, then $$f$$ is a function from $$A$$ to $$B$$.
• Theorem 6.25. Let $$A$$ and $$B$$ be nonempty sets and let $$f: A \to B$$. The inverse of $$f$$ is a function from $$B$$ to $$A$$ if and only if $$f$$ is a bijection.
• Theorem 6.26. Let $$A$$ and $$B$$ be nonempty sets and let $$f: A \to B$$ be a bijection. Then $$f^{-1}: B \to A$$ is a function, and for every $$a \in A$$ and $$b \in B$$,
$$f(a) = b$$ if and only if $$f^{-1}(b) = a$$.
• Corollary 6.28. Let $$A$$ and $$B$$ be nonempty sets and let $$f: A \to B$$ be a bijection. Then

1. For every $$x$$ in $$A$$, $$(f^{-1} \circ f)(x) = x$$.
2. For every $$y$$ in $$B$$, $$(f \circ f^{-1} (y) = y$$.
• Theorem 6.29. Let $$f: A \to B$$ and $$g: B \to C$$ be bijections. Then $$g \circ f$$ is a bijection and $$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$.
• Theorem 6.34. Let $$f: S \to T$$ be a function and let $$A$$ and $$B$$ be subsets of $$S$$. Then

1. $$f(A \cap B) \subseteq f(A) \cap f(B)$$
2. $$f(A \cup B) = f(A) \cup f(B)$$
• Theorem 6.35. Let $$f: S \to T$$ be a function and let $$C$$ and $$D$$ be subsets of $$T$$. Then

1. $$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$
2. $$f^{-1}(C \cup D) = f^{-1}(C) \cap f^{-1}(D)$$
• Theorem 6.36. Let $$f: S \to T$$ be a function and let $$A\( be a subset of \(S$$ and let $$C$$ be a subset of $$T$$. Then

1. $$A \subseteq f^{-1}(f(A))$$
2. $$f(f^{-1}(C) \subseteq C$$

This page titled 6.S: Functions (Summary) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts platform.