# 3.4: Disproofs

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

The idea of a “disproof” is really just semantics – in order to disprove a statement we need to prove its negation.

So far we’ve been discussing proofs quite a bit, but have paid very little attention to a really huge issue. If the statements we are attempting to prove are false, no proof is ever going to be possible. Really, a prerequisite to developing a facility with proofs is developing a good “lie detector.” We need to be able to guess, or quickly ascertain, whether a statement is true or false. If we are given a universally quantified statement the first thing to do is try it out for some random elements of the universe we’re working in. If we happen across a value that satisfies the statement’s hypotheses but doesn’t satisfy the conclusion, we’ve found what is known as a counterexample.

Consider the following statement about integers and divisibility:

##### Conjecture $$\PageIndex{1}$$

$∀a, b, c ∈ \mathbb{Z}, a| bc \implies a| b ∨ a| c.$

This is phrased as a UCS, so the hypothesis is clear, we’re looking for three integers so that the first divides the product of the other two. In the following table, we have collected several values for $$a$$, $$b$$ and $$c$$ such that $$a| bc$$.

$$a$$ $$b$$ $$c$$ $$a| b ∨ a| c ?$$
$$2$$ $$7$$ $$6$$ $$\text{yes}$$
$$2$$ $$4$$ $$5$$ $$\text{yes}$$
$$3$$ $$12$$ $$11$$ $$\text{yes}$$
$$3$$ $$5$$ $$15$$ $$\text{yes}$$
$$5$$ $$4$$ $$15$$ $$\text{yes}$$
$$5$$ $$10$$ $$3$$ $$\text{yes}$$
$$7$$ $$2$$ $$14$$ $$\text{yes}$$
##### Practice

As noted in Section 1.2 the statement above is related to whether or not a is prime. Note that in the table, only prime values of $$a$$ appear. This is a rather broad hint. Find a counterexample to Conjecture $$3.4.1$$.

There can be times when the search for a counterexample starts to feel really futile. Would you think it likely that a statement about natural numbers could be true for (more than) the first $$50$$ numbers a yet still be false?

##### Conjecture $$\PageIndex{2}$$

$$∀n ∈ \mathbb{Z} + n^2 − 79n + 1601$$ is prime.

##### Practice

Find a counterexample to Conjecture $$3.4.2$$

Hidden within Euclid’s proof of the infinitude of the primes is a sequence. Recall that in the proof we deduced a contradiction by considering the number $$N$$ defined by

$N = 1 + \prod_{k=1}^{n} p_k.$

Define a sequence by

$N_n = 1 + \prod_{k=1}^{n} p_k,$

where $$\{p_1, p_2, . . . , p_n\}$$ are the actual first $$n$$ primes. The first several values of this sequence are:

$$n$$ $$N_n$$
$$1$$ $$1 + (2) = 3$$
$$2$$ $$1 + (2 · 3) = 7$$
$$3$$ $$1 + (2 · 3 · 5) = 31$$
$$4$$ $$1 + (2 · 3 · 5 · 7) = 211$$
$$5$$ $$1 + (2 · 3 · 5 · 7 · 11) = 2311$$
$$⋮$$ $$⋮$$

Now, in the proof, we deduced a contradiction by noting that $$N_n$$ is much larger than $$p_n$$, so if $$p_n$$ is the largest prime it follows that $$N_n$$ can’t be prime – but what really appears to be the case (just look at that table!) is that $$N_n$$ actually is prime for all $$n$$.

##### Practice

Find a counterexample to the conjecture that $$1 + \prod^{n}_{k=1} p_k$$ is itself always a prime.

## Exercises:

##### Exercise $$\PageIndex{1}$$

Find a polynomial that assumes only prime values for a reasonably large range of inputs.

##### Exercise $$\PageIndex{2}$$

Find a counterexample to Conjecture $$3.4.1$$ using only powers of $$2$$.

##### Exercise $$\PageIndex{3}$$

The alternating sum of factorials provides an interesting example of a sequence of integers.

$$1! = 1 \\ 2! − 1! = 1 \\ 3! − 2! + 1! = 5 \\ 4! − 3! + 2! − 1! = 19 \\ \text{et cetera}$$

Are they all prime? (After the first two $$1$$’s.)

##### Exercise $$\PageIndex{4}$$

It has been conjectured that whenever $$p$$ is prime, $$2^p − 1$$ is also prime. Find a minimal counterexample.

##### Exercise $$\PageIndex{5}$$

True or false: The sum of any two irrational numbers is irrational. Prove your answer.

##### Exercise $$\PageIndex{6}$$

True or false: There are two irrational numbers whose sum is rational. Prove your answer.

##### Exercise $$\PageIndex{7}$$

True or false: The product of any two irrational numbers is irrational. Prove your answer.

##### Exercise $$\PageIndex{8}$$

True or false: There are two irrational numbers whose product is rational. Prove your answer.

##### Exercise $$\PageIndex{9}$$

True or false: Whenever an integer n is a divisor of the square of an integer, $$m^2$$, it follows that $$n$$ is a divisor of $$m$$ as well. (In symbols, $$∀n ∈ \mathbb{Z}, ∀m ∈ \mathbb{Z}, n | m^2 \implies n | m.)$$ Prove your answer.

##### Exercise $$\PageIndex{10}$$

In an exercise in Section 3.2, we proved that the quadratic equation $$ax^2 + bx + c = 0$$ has two solutions if $$ac < 0$$. Find a counterexample which shows that this implication cannot be replaced with a biconditional.

This page titled 3.4: Disproofs is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Joseph Fields.